Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/105639
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPinel, O.-
dc.contributor.authorHosseini, M.-
dc.contributor.authorSparkes, B.-
dc.contributor.authorEverett, J.-
dc.contributor.authorHigginbottom, D.-
dc.contributor.authorCampbell, G.-
dc.contributor.authorLam, P.-
dc.contributor.authorBuchler, B.-
dc.date.issued2013-
dc.identifier.citationJournal of Visualized Experiments, 2013; 2013(81):e50552-1-e50552-10-
dc.identifier.issn1940-087X-
dc.identifier.issn1940-087X-
dc.identifier.urihttp://hdl.handle.net/2440/105639-
dc.descriptionVideo Article - http://www.jove.com/video/50552-
dc.description.abstractGradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.-
dc.description.statementofresponsibilityOlivier Pinel, Mahdi Hosseini, Ben M. Sparkes, Jesse L. Everett, Daniel Higginbottom, Geoff T. Campbell, Ping Koy Lam, Ben C. Buchler-
dc.language.isoen-
dc.publisherMYJoVE Corporation-
dc.rightsCopyright © 2013 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License-
dc.source.urihttp://dx.doi.org/10.3791/50552-
dc.subjectPhysics; Issue 81; quantum memory; photon echo; rubidium vapor; gas cell; optical memory; gradient echo memory (GEM)-
dc.titleGradient echo quantum memory in warm atomic vapor-
dc.typeJournal article-
dc.identifier.doi10.3791/50552-
dc.relation.granthttp://purl.org/au-research/grants/arc/CE1101027-
pubs.publication-statusPublished-
dc.identifier.orcidSparkes, B. [0000-0002-9370-2006]-
Appears in Collections:Aurora harvest 8
Physics publications

Files in This Item:
File Description SizeFormat 
hdl_105639.pdfPublished version833.53 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.