Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Molecule-level g-C₃N₄ coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
Other Titles: Molecule-level g-C(3)N(4) coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
Author: Zheng, Y.
Jiao, Y.
Zhu, Y.
Cai, Q.
Vasileff, A.
Li, L.
Han, Y.
Chen, Y.
Qiao, S.
Citation: Journal of the American Chemical Society, 2017; 139(9):3336-3339
Publisher: American Chemical Society
Issue Date: 2017
ISSN: 0002-7863
Statement of
Yao Zheng, Yan Jiao , Yihan Zhu, Qiran Cai, Anthony Vasileff, Lu Hua Li, Yu Han, Ying Chen and Shi-Zhang Qiao
Abstract: Organometallic complexes with metal-nitrogen/carbon (M-N/C) coordination are the most important alternatives to precious metal catalysts for oxygen reduction and evolution reactions (ORR and OER) in energy conversion devices. Here, we designed and developed a range of molecule-level graphitic carbon nitride (g-C3N4) coordinated transition metals (M-C3N4) as a new generation of M-N/C catalysts for these oxygen electrode reactions. As a proof-of-concept example, we conducted theoretical evaluation and experimental validation on a cobalt-C3N4 catalyst with a desired molecular configuration, which possesses comparable electrocatalytic activity to that of precious metal benchmarks for the ORR and OER in alkaline media. The correlation of experimental and computational results confirms that this high activity originates from the precise M-N2 coordination in the g-C3N4 matrix. Moreover, the reversible ORR/OER activity trend for a wide variety of M-C3N4 complexes has been constructed to provide guidance for the molecular design of this promising class of catalysts.
Rights: Copyright © 2017 American Chemical Society
DOI: 10.1021/jacs.6b13100
Grant ID:
Published version:
Appears in Collections:Aurora harvest 3
Chemistry publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.