Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/107904
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: Improving object and event monitoring on twitter through lexical analysis and user profiling
Author: Zhang, Y.
Szabo, C.
Sheng, Q.
Citation: Lecture Notes in Artificial Intelligence, 2016 / Cellary, W., Mokbel, M., Wang, J., Wang, H., Zhou, R., Zhang, Y. (ed./s), vol.Part II, pp.19-34
Publisher: Springer
Issue Date: 2016
Series/Report no.: Lecture Notes in Computer Science vol. 10042
ISBN: 9783319487427
ISSN: 0302-9743
1611-3349
Conference Name: 17th International Conference on Web Information Systems Engineering (WISE) (8 Nov 2016 - 10 Nov 2016 : Shanghai, China)
Editor: Cellary, W.
Mokbel, M.
Wang, J.
Wang, H.
Zhou, R.
Zhang, Y.
Statement of
Responsibility: 
Yihong Zhang, Claudia Szabo, and Quan Z. Sheng
Abstract: Personal users on Twitter frequently post observations about their immediate environment as part of the 500 million tweets posted everyday. These observations and their implicitly associated time and location data are a valuable source of information for monitoring objects and events, such as earthquake, hailstorm, and shooting incidents. However, given the informal and uncertain expressions used in personal Twitter messages, and the various type of accounts existing on Twitter, capturing personal observations of objects and events is challenging. In contrast to the existing supervised approaches, which require significant efforts for annotating examples, in this paper, we propose an unsupervised approach for filtering personal observations. Our approach employs lexical analysis, user profiling and classification components to significantly improve filtering precision. To identify personal accounts, we define and compute a mean user profile for a dataset and employ distance metrics to evaluate the similarity of the user profiles under analysis to the mean. Our extensive experiments with real Twitter data show that our approach consistently improves filtering precision of personal observations by around 22%.
Keywords: Twitter; Microblog content classification; User profiling
Rights: © Springer International Publishing AG 2016
DOI: 10.1007/978-3-319-48743-4_2
Appears in Collections:Aurora harvest 3
Computer Science publications

Files in This Item:
File Description SizeFormat 
RA_hdl_107904.pdf
  Restricted Access
Restricted Access394.14 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.