Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/108661
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuan, W.en
dc.contributor.authorSheng, Q.en
dc.contributor.authorXu, P.en
dc.contributor.authorTran, N.en
dc.contributor.authorFalkner, N.en
dc.contributor.authorLi, X.en
dc.contributor.authorZhang, W.en
dc.date.issued2016en
dc.identifier.citationProceedings of the 25th International Conference on Information and Knowledge Management, 2016 / vol.24-28-October-2016, pp.2021-2024en
dc.identifier.isbn9781450340731en
dc.identifier.urihttp://hdl.handle.net/2440/108661-
dc.description.abstractHow to accurately forecast seasonal time series is very important for many business area such as marketing decision,planning production and profit estimation. In this paper, we propose a weighted gradient Radial Basis Function Network based AutoRegressive (WGRBF-AR) model for modeling and predicting the nonlinear and non-stationary seasonal time series. This WGRBF-AR model is a synthesis of the weighted gradient RBF network and the functional-coefficient autoregressive (FAR) model through using the WGRBF networks to approximate varying coefficients of FAR model. It not only takes the advantages of the FAR model in nonlinear dynamics description but also inherits the capability of the WGRBF network to deal with non-stationarity. We test our model using ten-years retail sales data on five different commodity in US. The results demonstrate that the proposed WGRBF-AR model can achieve competitive prediction accuracy compared with the state-of-the-art.en
dc.description.statementofresponsibilityWenjie Ruan, Quan Z. Sheng, Peipei Xu, Nguyen Khoi Tran, Xue Li, Wei Emma Zhangen
dc.language.isoenen
dc.publisherACMen
dc.rights© 2016 ACMen
dc.titleForecasting seasonal time series using weighted gradient RBF network based autoregressive modelen
dc.typeConference paperen
dc.identifier.rmid0030059267en
dc.contributor.conference25th ACM International Conference on Information and Knowledge Management (CIKM) (24 Oct 2016 - 28 Oct 2016 : Indianapolis, IN)en
dc.identifier.doi10.1145/2983323.2983899en
dc.identifier.pubid279893-
pubs.library.collectionComputer Science publicationsen
pubs.library.teamDS07en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidTran, N. [0000-0002-9538-7476]en
dc.identifier.orcidFalkner, N. [0000-0001-7892-6813]en
dc.identifier.orcidZhang, W. [0000-0002-0406-5974]en
Appears in Collections:Computer Science publications

Files in This Item:
File Description SizeFormat 
hdl_108661.pdfRestricted Access657.62 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.