Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/109365
Citations | ||
Scopus | Web of ScienceĀ® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Predicting the effectiveness of rolling dynamic compaction using genetic programming |
Author: | Ranasinghe, R. Jaksa, M. Nejad, F. Kuo, Y. |
Citation: | Proceedings of the Institution of Civil Engineers: Ground Improvement, 2017; 170(4):193-207 |
Publisher: | ICE Publishing |
Issue Date: | 2017 |
ISSN: | 1755-0750 1755-0769 |
Statement of Responsibility: | Ranasinghe Arachchilage Tharanga Madhushani Ranasinghe, Mark B. Jaksa, Fereydoon Pooya Nejad, Yien Lik Kuo |
Abstract: | Rolling dynamic compaction (RDC) is a soil compaction method that involves impacting the ground with a non-circular roller. This technique is currently in widespread use internationally and has proven to be suitable for many compaction applications, with improved capabilities over traditional compaction equipment. However, there is still a lack of knowledge about a priori estimation of the effectiveness of RDC on different soil profiles. To this end, the aim of this paper is to develop a reliable predictive tool based on a machine-learning approach: linear genetic programming (LGP). The models are developed from a database of cone penetration test (CPT)-based case histories. It is shown that the developed LGP-based correlations yield accurate predictions for unseen data and, in addition, that the results of a parametric study demonstrate its generalisation capabilities. Furthermore, the selected optimal LGP-based model is found to yield superior performance when compared with an artificial neural network model recently developed by the authors. It is concluded that the LGP-based model developed in this study is capable of providing reliable predictions of the effectiveness of RDC under various ground conditions. |
Rights: | Copyright status unknown |
DOI: | 10.1680/jgrim.17.00009 |
Appears in Collections: | Aurora harvest 3 Civil and Environmental Engineering publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.