Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/109516
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSubramani, S.-
dc.contributor.authorWang, H.-
dc.contributor.authorBalasubramaniam, S.-
dc.contributor.authorZhou, R.-
dc.contributor.authorMa, J.-
dc.contributor.authorZhang, Y.-
dc.contributor.authorWhittaker, F.-
dc.contributor.authorZhao, Y.-
dc.contributor.authorRangarajan, S.-
dc.contributor.editorCellary, W.-
dc.contributor.editorMokbel, M.-
dc.contributor.editorWang, J.-
dc.contributor.editorWang, H.-
dc.contributor.editorZhou, R.-
dc.contributor.editorZhang, Y.-
dc.date.issued2016-
dc.identifier.citationLecture Notes in Artificial Intelligence, 2016 / Cellary, W., Mokbel, M., Wang, J., Wang, H., Zhou, R., Zhang, Y. (ed./s), vol.10041, pp.553-560-
dc.identifier.isbn9783319487397-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/2440/109516-
dc.description.abstractActionable knowledge discovery plays a vital role in industrial problems such as Customer Relationship Management, insurance and banking. Actionable knowledge discovery techniques are not only useful in pointing out customers who are loyal and likely attritors, but it also suggests actions to transform customers from undesirable to desirable. Postprocessing is one of the actionable knowledge discovery techniques which are efficient and effective in strategic decision making and used to unearth hidden patterns and unknown correlations underlying the business data. In this paper, we present a novel technique named Reordering based Diversified Actionable Decision Trees (RDADT), which is an effective actionable knowledge discovery based classification algorithm. RDADT contrasts traditional classification algorithms by constructing committees of decision trees in a reordered fashion and discover actionable rules containing all the attributes. Experimental evaluation on UCI benchmark data shows that the proposed technique has higher classification accuracy than traditional decision tree algorithms.-
dc.description.statementofresponsibilitySudha Subramani, Hua Wang, Sathiyabhama Balasubramaniam, Rui Zhou, Jiangang Ma, Yanchun Zhang, Frank Whittaker, Yueai Zhao, and Sarathkumar Rangarajan-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesLNCS-
dc.rights© Springer International Publishing AG 2016-
dc.subjectData mining; Actionable knowledge discovery; Postprocessing; Decision tree-
dc.titleMining actionable knowledge using reordering based diversified actionable decision trees-
dc.typeConference paper-
dc.contributor.conference17th International Conference on Web Information Systems Engineering (WISE) (7 Nov 2016 - 10 Nov 2016 : Shanghai, China)-
dc.identifier.doi10.1007/978-3-319-48740-3_41-
pubs.publication-statusPublished-
dc.identifier.orcidZhou, R. [0000-0001-6807-4362]-
Appears in Collections:Aurora harvest 8
Computer Science publications

Files in This Item:
File Description SizeFormat 
RA_hdl_109516.pdf
  Restricted Access
Restricted access605.13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.