Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTerentiev, R.-
dc.contributor.authorSantosh, M.-
dc.identifier.citationInternational Geology Review, 2016; 58(9):1108-1126-
dc.description.abstractThe Vorontsovka terrane (VT) is an important component of the East Sarmatian Orogen (ESO) which divides the Precambrian cores of the Sarmatian and Volgo-Uralia segments of the East European Craton (EEC). The tectonic framework of the VT remains controversial due to poor constraints from geochemical and geochronological studies. In this article we present detrital zircon U–Pb ages and geochemical features of the Precambrian meta-sedimentary rocks from the VT, which occur interlayered with calc-silicate rocks and metabasites. Most of the zircons from metasediments possess oscillatory zoning and high Th/U ratios (>0.2), indicating magmatic provenance. Their ²⁰⁷Pb/²⁰⁶Pb ages cluster around 2093 ± 7, 2126 ± 7, 2158 ± 12, 2189 ± 16, and 2210 ± 31 Ma, correlating with the ages of magmatic zircon cores from the surrounding igneous suites, and reflecting a single tectono-magmatic cycle (~2200–2100 Ma) in the source area. Age of the youngest detrital zircon grain from the metasedimentary rocks and the cores of zircon grains from igneous suites show ²⁰⁷Pb/²⁰⁶Pb ages at 2094 and 2106 Ma, respectively. Together with the largest age clusters of 2126 ± 7 and 2158 ± 12 Ma of the magmatic cores of the detrital zircons, the timing of sedimentation is inferred as ~ 2100–2170 Ma. The metapelites display strong rare earth element fractionation with variable Eu anomalies ((La/Yb)N = 7.0–14.5, Eu/Eu* = 0.49–1.23). In contrast, the calc-silicate rocks and metabasites lack Eu anomalies ((La/Yb)N = 5.2–11.5, Eu/Eu* = 0.87–1.00). The large-ion lithophile (LILE) and high field strength element (HFSE) concentrations of most samples are comparable with those of the upper continental crust (UCC). The rocks possess negative anomalies of Th, Nb, Sr, and Zr relative to UCC. Their high Index of Compositional Variability (0.85–1.32, up to 1.8 in metabasites) and relatively low Chemical Index of Alteration (46.1–70.4) indicate that the metapelitic sediments were immature to weakly immature and probably underwent minor chemical weathering. The protoliths of the metabasites are interpreted as interlayered volcano-sedimentary and pyroclastic material. Relict clastic textures of the VT rocks, their geochemical features, and the grain morphology of detrital zircons suggest that the sediments were derived from intermediate and felsic provenances, which were most likely deposited in an environment with active volcanism. We envisage an active continental margin setting in the southwestern part of the Volgo-Uralia segment of the EEC related to the assembly of the Palaeoproterozoic Columbia supercontinent. Combined with recent data from surrounding terranes of the ESO, our results suggest that the VT represents an accretionary prism along a continental arc within the Sarmatia and Volgo-Uralia oceanic realm in the Palaeoproterozoic.-
dc.description.statementofresponsibilityR.A. Terentiev and M. Santosh-
dc.publisherTaylor & Francis-
dc.rights© 2016 Taylor & Francis-
dc.subjectPalaeoproterozoic; East Sarmatian Orogen; metasedimentary rocks; detrital zircon geochronology; tectonics-
dc.titleDetrital zircon geochronology and geochemistry of metasediments from the Vorontsovka terrane: implications for microcontinent tectonics-
dc.typeJournal article-
dc.identifier.orcidSantosh, M. [0000-0002-1073-8477]-
Appears in Collections:Aurora harvest 8
Geology & Geophysics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.