Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/109626
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Coupled nonlinear dynamics of geometrically imperfect shear deformable extensible microbeams
Author: Ghayesh, M.
Farokhi, H.
Citation: Journal of Computational and Nonlinear Dynamics, 2016; 11(4):041001-1-041001-10
Publisher: ASME-American Society of Mechanical Engineers
Issue Date: 2016
ISSN: 1555-1415
1555-1423
Statement of
Responsibility: 
Mergen H. Ghayesh, Hamed Farokhi
Abstract: This paper aims at analyzing the coupled nonlinear dynamical behavior of geometrically imperfect shear deformable extensible microbeams based on the third-order shear deformation and modified couple stress theories. Using Hamilton’s principle and taking into account extensibility, the three nonlinear coupled continuous expressions are obtained for an initially slightly curved (i.e., a geometrically imperfect) microbeam, describing the longitudinal, transverse, and rotational motions. A high-dimensional Galerkin scheme is employed, together with an assumed-mode technique, in order to truncate the continuous system with an infinite number of degrees of freedom into a discretized model with sufficient degrees of freedom. This high-dimensional discretized model is solved by means of the pseudo-arclength continuation technique for the system at the primary resonance, and also by direct time-integration to characterize the dynamic response at a fixed forcing amplitude and frequency; stability analysis is conducted via the Floquet theory. Apart from analyzing the nonlinear resonant response, the linear natural frequencies are obtained via an eigenvalue analysis. Results are shown through frequency–response curves, force–response curves, time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The effect of taking into account the length-scale parameter on the coupled nonlinear dynamic response of the system is also highlighted.
Keywords: Coupled nonlinear dynamics; third-order shear deformation theory; modified coupled stress theory; initial imperfection
Rights: Copyright © 2016 by ASME
RMID: 0030066072
DOI: 10.1115/1.4031288
Appears in Collections:Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.