Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz)
Author: Xie, H.
Konate, M.
Sai, N.
Tesfamicael, K.
Cavagnaro, T.
Gilliham, M.
Breen, J.
Metcalfe, A.
Stephen, J.
De Bei, R.
Collins, C.
Lopez, C.
Citation: Frontiers in Plant Science, 2017; 8:1860-1-1860-16
Publisher: Frontiers Media SA
Issue Date: 2017
ISSN: 1664-462X
Statement of
Huahan Xie, Moumouni Konate, Na Sai, Kiflu G. Tesfamicael, Timothy Cavagnaro, Matthew Gilliham, James Breen, Andrew Metcalfe, John R. Stephen, Roberta De Bei, Cassandra Collins, and Carlos M. R. Lopez
Abstract: Understanding how grapevines perceive and adapt to different environments will provide us with an insight into how to better manage crop quality. Mounting evidence suggests that epigenetic mechanisms are a key interface between the environment and the genotype that ultimately affect the plant's phenotype. Moreover, it is now widely accepted that epigenetic mechanisms are a source of useful variability during crop varietal selection that could affect crop performance. While the contribution of DNA methylation to plant performance has been extensively studied in other major crops, very little work has been done in grapevine. To study the genetic and epigenetic diversity across 22 vineyards planted with the cultivar Shiraz in six wine sub-regions of the Barossa, South Australia. Methylation sensitive amplified polymorphisms (MSAPs) were used to obtain global patterns of DNA methylation. The observed epigenetic profiles showed a high level of differentiation that grouped vineyards by their area of provenance despite the low genetic differentiation between vineyards and sub-regions. Pairwise epigenetic distances between vineyards indicate that the main contributor (23-24%) to the detected variability is associated to the distribution of the vineyards on the N-S axis. Analysis of the methylation profiles of vineyards pruned with the same system increased the positive correlation observed between geographic distance and epigenetic distance suggesting that pruning system affects inter-vineyard epigenetic differentiation. Finally, methylation sensitive genotyping by sequencing identified 3,598 differentially methylated genes in grapevine leaves that were assigned to 1,144 unique gene ontology terms of which 8.6% were associated with response to environmental stimulus. Our results suggest that DNA methylation differences between vineyards and sub-regions within The Barossa are influenced both by the geographic location and, to a lesser extent, by pruning system. Finally, we discuss how epigenetic variability can be used as a tool to understand and potentially modulate terroir in grapevine.
Keywords: Environmental epigenetics; DNA methylation; terroir; MSAP; msGBS; Vitis Vinifera; Shiraz; Barossa
Rights: Copyright © 2017 Xie, Konate, Sai, Tesfamicael, Cavagnaro, Gilliham, Breen, Metcalfe, Stephen, De Bei, Collins and Lopez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI: 10.3389/fpls.2017.01860
Grant ID:
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 3

Files in This Item:
File Description SizeFormat 
hdl_110366.pdfPublished Version3.64 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.