Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/111202
Type: Conference paper
Title: Speedup techniques for molecular dynamics simulations of the interaction of acoustic waves and nanomaterials
Author: Bennett, H.
Zander, A.
Cazzolato, B.
Huang, D.
Citation: Proceedings of the 21st International Congress on Modelling and Simulation (MODSIM 2015), 2015 / Weber, T., McPhee, M., Anderssen, R. (ed./s), pp.655-661
Publisher: The Modelling and Simulation Society of Australia and New Zealand
Issue Date: 2015
ISBN: 9780987214355
Conference Name: 21st International Congress on Modelling and Simulation (MODSIM 2015) held jointly with the 23rd National Conference of the Australian-Society-for-Operations-Research / DSTO led Defence Operations Research Symposium (DORS) (29 Nov 2015 - 04 Dec 2015 : Gold Coast, AUSTRALIA)
Statement of
Responsibility: 
H.A. Bennett, A.C. Zander, B.S. Cazzolato and D.M. Huang
Abstract: Nanomaterials are seen to have great potential for use in the area of sound absorption. However, direct inspection of the interactions between acoustic waves and nanomaterials is not feasible due to the short time and length-scales involved. Molecular dynamics simulations can assist in improving understanding of the mechanisms involved in this process, but they have limitations that must be overcome to make their use viable. The primary limitation is that molecular dynamics is computationally expensive, making the time-scales over which results can be obtained very short. This, in turn, makes the acoustic frequencies that can be examined extremely high. In the current work, the use of a simplified force field, multiple time-stepping, and an analytical description of the sound source producing the acoustic waves are investigated as methods to improve the speed of a model that simulates acoustic wave and nanomaterial interactions, as speedup directly translates into increased feasibility of longer time-scales (lower acoustic frequencies) and larger domains. The speedup and accuracy of these techniques are determined through benchmarking against existing computational results for the interaction of a carbon nanotube with a 2.57 GHz acoustic wave propagating through argon gas. Significant speedup is obtained using these techniques: replacing the oscillating atomistic wall in the benchmark case with the analytical oscillating wall produces a speedup factor of 1.3; using the simpler Dreiding force field for the carbon nanotube instead of the benchmark case’s REBO potential results in a speedup factor of 3.6; and exchanging the Velocity Verlet time integrator in the benchmark case with an rRESPA multiple time-step integrator along with using the Dreiding force field leads to a speedup factor of approximately 39. Combining all of these techniques further increases the speedup, resulting in a speedup factor of approximately 50 compared with the benchmark. The error introduced into the numerical results is no greater than 6%, suggesting these speedup techniques are appropriate for molecular dynamics simulations of acoustic wave and nanomaterial interactions.
Keywords: Molecular dynamics; nanomaterials; acoustics
Description: Computer science and engineering. Session C5. Modelling, simulation and optimization in engineering
Rights: Copyright status unknown
RMID: 0030076495
Grant ID: http://purl.org/au-research/grants/arc/DP130102832
Published version: https://www.mssanz.org.au/modsim2015/papersbysession.html
Appears in Collections:Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.