Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/111493
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation
Author: Ullah, H.
Nagelkerken, I.
Goldenberg, S.
Fordham, D.
Citation: PLoS Biology, 2018; 16(1):e2003446-1-e2003446-21
Publisher: Public Library of Science (PLoS)
Issue Date: 2018
ISSN: 1544-9173
1545-7885
Statement of
Responsibility: 
Hadayet Ullah, Ivan Nagelkerken, Silvan U. Goldenberg, Damien A. Fordham
Abstract: Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels-i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer-consumer dynamics, both of which have important implications for the structuring of benthic communities.
Keywords: MTE, metabolic theory of ecology; OA, elevated CO2; OAT, elevated CO2 and temperature; T, elevated temperature
Description: Published: January 9, 2018
Rights: © 2018 Ullah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
RMID: 0030080155
DOI: 10.1371/journal.pbio.2003446
Grant ID: http://purl.org/au-research/grants/arc/FT120100183
http://purl.org/au-research/grants/arc/FT140101192
Appears in Collections:Environment Institute Leaders publications

Files in This Item:
File Description SizeFormat 
hdl_111493.pdfPublished version1.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.