Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/111569
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Multi-messenger observations of a binary neutron star merger
Author: Abbott, B.
Abbott, R.
Abbott, T.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R.
Adya, V.
Affeldt, C.
Afrough, M.
Agarwal, B.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O.
Aiello, L.
Ain, A.
Ajith, P.
et al.
Citation: Astrophysical Journal Letters, 2017; 848(2):L12-1-L12-59
Publisher: Institute of Physics Publishing
Issue Date: 2017
ISSN: 2041-8205
2041-8213
Statement of
Responsibility: 
Roger W. Clay … Bruce R. Dawson … Miftar Ganija … Won Kim … James C. Lau … Jesper Munch … David J. Ottaway … Sally A. Robertson … Gavin P. Rowell … Peter J. Veitch … Fabien Voisin … et al.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Rights: Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
RMID: 0030077437
DOI: 10.3847/2041-8213/aa91c9
Grant ID: http://purl.org/au-research/grants/arc/FT150100099
http://purl.org/au-research/grants/arc/FL150100148
http://purl.org/au-research/grants/arc/CE170100013
http://purl.org/au-research/grants/arc/CE1101020
Appears in Collections:Physics publications

Files in This Item:
File Description SizeFormat 
hdl_111569.pdfPublished version2.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.