Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/111875
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Efficient attachment of carbon nanotubes to conventional and high-frequency AFM probes enhanced by electron beam processes
Author: Slattery, A.
Blanch, A.
Quinton, J.
Gibson, C.
Citation: Nanotechnology, 2013; 24(23):1-13
Publisher: IOP Publishing
Issue Date: 2013
ISSN: 0957-4484
1361-6528
Statement of
Responsibility: 
Ashley D Slattery, Adam J Blanch, Jamie S Quinton and Christopher T Gibson
Abstract: Carbon nanotubes are considered to be an ideal imaging tip for atomic force microscopy (AFM) applications, and a number of methods for fabricating these types of probe have been developed in recent years. This work reports the attachment of carbon nanotubes to AFM probes using a micromanipulator within a scanning electron microscope. Electron beam induced deposition and etching are used to enhance the quality and attachment of the carbon nanotube tip and improve the fabrication rate of the CNT AFM probes compared to existing techniques. The attachment process is also improved by using a mat of SWCNTs (buckypaper) as a CNT source, which simultaneously improves the ease of fabrication and rate of nanotube probe production. The aim of these improvements is to simplify and improve the attachment process such that these probes can be better and more widely used in applications that benefit from their unique properties. This improved process is then used to attach CNTs to the new generation of low-mass, high-frequency probes, which are designed for rapid AFM imaging. The ability of these probes to operate with CNT tips is demonstrated, and their wear-resistance properties were found to be significantly enhanced compared to unmodified probes. These wear-resistant probes imaging at high scan rates are proposed to be effective tools for increasing throughput in metrological analysis, particularly for imaging high-modulus surfaces with high roughness and high-aspect-ratio features.
Rights: © 2013 IOP Publishing Ltd
RMID: 0030079947
DOI: 10.1088/0957-4484/24/23/235705
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.