Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/11191
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
Author: Chian, A.
Rempel, E.
Macau, E.
Rosa, R.
Christiansen, F.
Citation: Physical Review E. (Statistical, Nonlinear, and Soft Matter Physics), 2002; 65(3):1-4
Publisher: American Physical Soc
Issue Date: 2002
ISSN: 1539-3755
1063-651X
Statement of
Responsibility: 
A. C.-L. Chian, E. L. Rempel, E. E. Macau, R. R. Rosa, and F. Christiansen
Abstract: An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated invariant manifolds in the Poincaré hyperplane can effectively characterize the global bifurcation dynamics of high-dimensional systems.
Rights: ©2002 American Physical Society
RMID: 0020020464
DOI: 10.1103/PhysRevE.65.035203
Appears in Collections:Special Research Centre for the Subatomic Structure of Matter publications

Files in This Item:
File Description SizeFormat 
hdl_11191.pdfPublished version132.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.