Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
Author: Chian, A.
Rempel, E.
Macau, E.
Rosa, R.
Christiansen, F.
Citation: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002; 65(3):1-4
Publisher: American Physical Soc
Issue Date: 2002
ISSN: 1539-3755
Statement of
A. C.-L. Chian, E. L. Rempel, E. E. Macau, R. R. Rosa, and F. Christiansen
Abstract: An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated invariant manifolds in the Poincaré hyperplane can effectively characterize the global bifurcation dynamics of high-dimensional systems.
Rights: ©2002 American Physical Society
DOI: 10.1103/PhysRevE.65.035203
Published version:
Appears in Collections:Aurora harvest 7
Special Research Centre for the Subatomic Structure of Matter publications

Files in This Item:
File Description SizeFormat 
hdl_11191.pdfPublished version132.27 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.