Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/112371
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltalmas, T.en
dc.contributor.authorAula, A.en
dc.contributor.authorAhmad, S.en
dc.contributor.authorTokhi, M.en
dc.contributor.authorAkmeliawati, R.en
dc.date.issued2016en
dc.identifier.citationAssistive Technology, 2016; 28(3):159-174en
dc.identifier.issn1040-0435en
dc.identifier.issn1949-3614en
dc.identifier.urihttp://hdl.handle.net/2440/112371-
dc.description.abstractTwo-wheeled wheelchairs are considered highly nonlinear and complex systems. The systems mimic a double-inverted pendulum scenario and will provide better maneuverability in confined spaces and also to reach higher level of height for pick and place tasks. The challenge resides in modeling and control of the two-wheeled wheelchair to perform comparably to a normal four-wheeled wheelchair. Most common modeling techniques have been accomplished by researchers utilizing the basic Newton's Laws of motion and some have used 3D tools to model the system where the models are much more theoretical and quite far from the practical implementation. This article is aimed at closing the gap between the conventional mathematical modeling approaches where the integrated 3D modeling approach with validation on the actual hardware implementation was conducted. To achieve this, both nonlinear and a linearized model in terms of state space model were obtained from the mathematical model of the system for analysis and, thereafter, a 3D virtual prototype of the wheelchair was developed, simulated, and analyzed. This has increased the confidence level for the proposed platform and facilitated the actual hardware implementation of the two-wheeled wheelchair. Results show that the prototype developed and tested has successfully worked within the specific requirements established.en
dc.description.statementofresponsibilityTareq Altalmas, Abqori Aula, Salmiah Ahmad, M.O. Tokhi and Rini Akmeliawatien
dc.language.isoenen
dc.publisherTaylor & Francisen
dc.rights© 2016 RESNAen
dc.subjectDouble inverted pendulum; equality; Lagrangian model; mobility; two-wheeled mobile robot; wheelchairen
dc.titleIntegrated modeling and design for realizing a two-wheeled wheelchair for disableden
dc.typeJournal articleen
dc.identifier.rmid0030085501en
dc.identifier.doi10.1080/10400435.2016.1140688en
dc.identifier.pubid393578-
pubs.library.collectionMechanical Engineering publicationsen
pubs.library.teamDS14en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidAkmeliawati, R. [0000-0003-0660-2312]en
Appears in Collections:Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.