Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Bayesian models of cognition revisited: setting optimality aside and letting data drive psychological theory
Author: Tauber, S.
Navarro, D.
Perfors, A.
Steyvers, M.
Citation: Psychological Review, 2017; 124(4):410-441
Publisher: American Psychological Association
Issue Date: 2017
ISSN: 0033-295X
Statement of
Sean Tauber, Daniel J. Navarro, Amy Perfors, Mark Steyvers
Abstract: Recent debates in the psychological literature have raised questions about the assumptions that underpin Bayesian models of cognition and what inferences they license about human cognition. In this paper we revisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could be constructed. The most common approach uses a Bayesian model as a normative standard upon which to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool for instantiating a substantive psychological theory. We present 3 case studies in which these 2 perspectives lead to different computational models and license different conclusions about human cognition. We demonstrate how the descriptive Bayesian approach can be used to answer different sorts of questions than the optimal approach, especially when combined with principled tools for model evaluation and model selection. More generally we argue for the importance of making a clear distinction between the 2 perspectives. Considerable confusion results when descriptive models and optimal models are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making normative claims when none are intended.
Keywords: Bayesian cognitive models; rational models; inductive reasoning; generalization; optimal predictions
Rights: © 2017 American Psychological Association
RMID: 0030071867
DOI: 10.1037/rev0000052
Appears in Collections:Psychology publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.