Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/113021
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWei, R.en
dc.contributor.authorTian, H.en
dc.contributor.authorShen, H.en
dc.date.issued2018en
dc.identifier.citationComputers and Electrical Engineering, 2018; 67:509-519en
dc.identifier.issn0045-7906en
dc.identifier.issn1879-0755en
dc.identifier.urihttp://hdl.handle.net/2440/113021-
dc.descriptionAvailable online 9 March 2018en
dc.description.statementofresponsibilityRuoxuan Wei, Hui Tian, Hong Shenen
dc.language.isoenen
dc.publisherElsevieren
dc.rights© 2018 Elsevier Ltd. All rights reserved.en
dc.subjectRecommender system; collaborative filtering; privacy preserving; anonymityen
dc.titleImproving k-anonymity based privacy preservation for collaborative filteringen
dc.typeJournal articleen
dc.identifier.rmid0030084309en
dc.identifier.doi10.1016/j.compeleceng.2018.02.017en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP150104871en
dc.identifier.pubid401557-
pubs.library.collectionComputer Science publicationsen
pubs.library.teamDS03en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidShen, H. [0000-0002-3663-6591]en
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.