Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/113681
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarokhi, H.-
dc.contributor.authorGhayesh, M.-
dc.contributor.authorHussain, S.-
dc.date.issued2016-
dc.identifier.citationMeccanica, 2016; 51(10):2459-2472-
dc.identifier.issn0025-6455-
dc.identifier.issn1572-9648-
dc.identifier.urihttp://hdl.handle.net/2440/113681-
dc.description.abstractThe dynamic stability in parametric resonance of a Timoshenko microbeam subject to a time-dependent axial excitation load (comprised of a mean value along with time-dependent variations) is analysed in the subcritical regime. Based on the modified couple stress theory, continuous expressions for the elastic potential and kinetic energies are developed using kinematic and kinetic relations. The continuous model of the system is obtained via use of Hamilton’s principal. A model reduction procedure is carried out by applying the Galerkin scheme, in conjunction with an assumed-mode technique, yielding a high-dimensional second-order reduced-order model. A liner analysis is carried out upon the linear part of this model in order to obtain the linear natural frequencies and critical buckling loads. For the system in the subcritical regime, the parametric nonlinear responses are analysed by exciting the system at the principal parametric resonance in the first mode of transverse motion; this analysis is performed via use of a continuation technique, the Floquet theory, and a direct time integration method. Results are shown in the form of parametric frequency–responses, parametric force–responses, time traces, phase-plane diagrams, and fast Fourier transforms. The validity of the numerical simulations is tested via comparing our results, for simpler models for buckling response, with those given in the literature.-
dc.description.statementofresponsibilityHamed Farokhi, Mergen H. Ghayesh, Shahid Hussain-
dc.language.isoen-
dc.publisherSpringer-
dc.rights© Springer Science+Business Media Dordrecht 2016-
dc.subjectParametrically excited; Timoshenko microbeam; modified couple stress theory; time-dependent axial load-
dc.titleDynamic stability in parametric resonance of axially excited Timoshenko microbeams-
dc.typeJournal article-
dc.identifier.doi10.1007/s11012-016-0380-8-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 3
Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.