Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/114082
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Multi-generational evaluation of genetic diversity and parentage in captive southern pygmy perch (Nannoperca australis)
Author: Attard, C.R.
Brauer, C.J.
Van Zoelen, J.D.
Sasaki, M.
Hammer, M.P.
Morrison, L.
Harris, J.O.
Möller, L.M.
Beheregaray, L.B.
Citation: Conservation Genetics, 2016; 17(6):1469-1473
Publisher: Springer
Issue Date: 2016
ISSN: 1566-0621
1572-9737
Statement of
Responsibility: 
Catherine R.M. Attard, Chris J. Brauer, Jacob D. Van Zoelen, Minami Sasaki, Michael P. Hammer, Leslie Morrison, James O. Harris, Luciana M. Möller, Luciano B. Beheregaray
Abstract: Maintaining genetic diversity within captive breeding populations is a key challenge for conservation managers. We applied a multi-generational genetic approach to the captive breeding program of an endangered Australian freshwater fish, the southern pygmy perch (Nannoperca australis). During previous work, fish from the lower Murray-Darling Basin were rescued before drought exacerbated by irrigation resulted in local extinction. This endemic lineage of the species was captive-bred in genetically designed groups, and equal numbers of F1 individuals were reintroduced to the wild with the return of favourable habitat. Here, we implemented a contingency plan by continuing the genetic-based captive breeding in the event that a self-sustaining wild population was not established. F1 individuals were available as putative breeders from the subset of groups that produced an excess of fish in the original restoration program. We used microsatellite-based parentage analyses of these F1 fish to form breeding groups that minimized inbreeding. We assessed their subsequent parental contribution to F2 individuals and the maintenance of genetic diversity. We found skewed parental contribution to F2 individuals, yet minimal loss of genetic diversity from their parents. However, the diversity was substantially less than that of the original rescued population. We attribute this to the unavoidable use of F1 individuals from a limited number of the original breeding groups. Alternative genetic sources for supplementation or reintroduction should be assessed to determine their suitability. The genetic fate of the captive-bred population highlights the strong need to integrate DNA-based tools for monitoring and adaptive management of captive breeding programs.
Keywords: Restoration genetics; pedigree; kinship; relatedness; fish; biodiversity extinction
Rights: © Springer Science+Business Media Dordrecht 2016
DOI: 10.1007/s10592-016-0873-y
Grant ID: http://purl.org/au-research/grants/arc/LP100200409
http://purl.org/au-research/grants/arc/FT130101068
Appears in Collections:Aurora harvest 8
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.