Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChin, Tat-Jun-
dc.contributor.advisorSuter, David-
dc.contributor.authorLe, Huu Minh-
dc.description.abstractIn many computer vision applications, the task of robustly estimating the set of parameters of a geometric model is a fundamental problem. Despite the longstanding research efforts on robust model fitting, there remains significant scope for investigation. For a large number of geometric estimation tasks in computer vision, maximum consensus is the most popular robust fitting criterion. This thesis makes several contributions in the algorithms for consensus maximization. Randomized hypothesize-and-verify algorithms are arguably the most widely used class of techniques for robust estimation thanks to their simplicity. Though efficient, these randomized heuristic methods do not guarantee finding good maximum consensus estimates. To improve the randomize algorithms, guided sampling approaches have been developed. These methods take advantage of additional domain information, such as descriptor matching scores, to guide the sampling process. Subsets of the data that are more likely to result in good estimates are prioritized for consideration. However, these guided sampling approaches are ineffective when good domain information is not available. This thesis tackles this shortcoming by proposing a new guided sampling algorithm, which is based on the class of LP-type problems and Monte Carlo Tree Search (MCTS). The proposed algorithm relies on a fundamental geometric arrangement of the data to guide the sampling process. Specifically, we take advantage of the underlying tree structure of the maximum consensus problem and apply MCTS to efficiently search the tree. Empirical results show that the new guided sampling strategy outperforms traditional randomized methods. Consensus maximization also plays a key role in robust point set registration. A special case is the registration of deformable shapes. If the surfaces have the same intrinsic shapes, their deformations can be described accurately by a conformal model. The uniformization theorem allows the shapes to be conformally mapped onto a canonical domain, wherein the shapes can be aligned using a M¨obius transformation. The problem of correspondence-free M¨obius alignment of two sets of noisy and partially overlapping point sets can be tackled as a maximum consensus problem. Solving for the M¨obius transformation can be approached by randomized voting-type methods which offers no guarantee of optimality. Local methods such as Iterative Closest Point can be applied, but with the assumption that a good initialization is given or these techniques may converge to a bad local minima. When a globally optimal solution is required, the literature has so far considered only brute-force search. This thesis contributes a new branch-and-bound algorithm that solves for the globally optimal M¨obius transformation much more efficiently. So far, the consensus maximization problems are approached mainly by randomized algorithms, which are efficient but offer no analytical convergence guarantee. On the other hand, there exist exact algorithms that can solve the problem up to global optimality. The global methods, however, are intractable in general due to the NP-hardness of the consensus maximization. To fill the gap between the two extremes, this thesis contributes two novel deterministic algorithms to approximately optimize the maximum consensus criterion. The first method is based on non-smooth penalization supported by a Frank-Wolfe-style optimization scheme, and another algorithm is based on Alternating Direction Method of Multipliers (ADMM). Both of the proposed methods are capable of handling the non-linear geometric residuals commonly used in computer vision. As will be demonstrated, our proposed methods consistently outperform other heuristics and approximate methods.en
dc.subjectRobust fittingen
dc.subjectmaximum consensusen
dc.subjectguided samplingen
dc.subjectMobius searchen
dc.subjectapproximate algorithmsen
dc.titleNew algorithmic developments in maximum consensus robust fittingen
dc.contributor.schoolSchool of Computer Scienceen
dc.provenanceThis electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at
dc.description.dissertationThesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Computer Science, 2018en
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Le2018_PhD.pdf25.06 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.