Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: CO₂-tolerant ceramic membrane driven by electrical current for oxygen production at intermediate temperatures
Other Titles: CO(2)-tolerant ceramic membrane driven by electrical current for oxygen production at intermediate temperatures
Author: Zhang, K.
Meng, B.
Tan, X.
Liu, L.
Wang, S.
Liu, S.
Citation: Journal of the American Ceramic Society, 2014; 97(1):120-126
Publisher: Wiley
Issue Date: 2014
ISSN: 0002-7820
Statement of
Kun Zhang, Bo Meng, Xiaoyao Tan, Lihong Liu, Shaobin Wang, and Shaomin Liu
Abstract: In this work, an electrochemical oxygen pump ceramic membrane based on Sm₀.₂Ce₀.₈O₁.₉ (SDC) electrolyte and La₀.₆Sr₀.₄FeO₃−δ (LSF) electrode was prepared and characterized by XRD, SEM, and EDX. The area specific resistance of the membranes was measured by impedance spectroscopy. The oxygen electrical permeation behavior of SDC/LSF membrane was investigated under different operating conditions. In consistent with the theoretical prediction from Faraday law, the oxygen flux value observed is closely correlated in quantity with the applied current density. The permeation (or Faraday) efficiency of SDC/LSF membrane could reach above 95% at lower temperatures (600°C–700°C). At 700°C, the oxygen flux through SDC/LSF membrane with 3000 mA/cm² current density could reach ~9.97 mL/cm²/min. In addition, the prepared SDC/LSF membrane electrical performance was also tested under the presence of CO2. It was found that SDC/LSF membrane has excellent structure and permeation stability against CO₂ gas, reflecting its potential applications like oxyfuel technologies and hydrocarbon oxidations.
Rights: © 2013 The American Ceramic Society
RMID: 0030096642
DOI: 10.1111/jace.12690
Grant ID:
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.