Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/117165
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Snowball Earth climate dynamics and Cryogenian geology-geobiology
Author: Hoffman, P.
Abbot, D.
Ashkenazy, Y.
Benn, D.
Brocks, J.
Cohen, P.
Cox, G.
Creveling, J.
Donnadieu, Y.
Erwin, D.
Fairchild, I.
Ferreira, D.
Goodman, J.
Halverson, G.
Jansen, M.
Le Hir, G.
Love, G.
Macdonald, F.
Maloof, A.
Partin, C.
et al.
Citation: Science Advances, 2017; 3(11):e1600983-1-e1600983-43
Publisher: American Association for the Advancement of Science
Issue Date: 2017
ISSN: 2375-2548
2375-2548
Statement of
Responsibility: 
Paul F. Hoffman, Dorian S. Abbot, Yosef Ashkenazy, Douglas I. Benn, Jochen J. Brocks, Phoebe A. Cohen, Grant M. Cox, Jessica R. Creveling, Yannick Donnadieu, Douglas H. Erwin, Ian J. Fairchild, David Ferreira, Jason C. Goodman, Galen P. Halverson, Malte F. Jansen, Guillaume Le Hir, Gordon D. Love, Francis A. Macdonald, Adam C. Maloof, Camille A. Partin, Gilles Ramstein, Brian E.J. Rose, Catherine V. Rose, Peter M. Sadler, Eli Tziperman, Aiko Voigt, Stephen G. Warren
Abstract: Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO₂ was 10² PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO₂ rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.
Keywords: Animals; Carbon Dioxide; Climate; Ice Cover; Earth (Planet); Radiometric Dating
Rights: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
RMID: 0030077831
DOI: 10.1126/sciadv.1600983
Appears in Collections:Earth and Environmental Sciences publications

Files in This Item:
File Description SizeFormat 
hdl_117165.pdfPublished version7.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.