Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/117290
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Cross-species meta-analysis of transcriptomic data in combination with supervised machine learning models identifies the common gene signature of lactation process
Author: Farhadian, M.
Rafat, S.
Hasanpur, K.
Ebrahimi, M.
Ebrahimie, E.
Citation: Frontiers in Genetics, 2018; 9(JUL):1-17
Publisher: Frontiers
Issue Date: 2018
ISSN: 1664-8021
1664-8021
Statement of
Responsibility: 
Mohammad Farhadian, Seyed A. Rafat, Karim Hasanpur, Mansour Ebrahimi and Esmaeil Ebrahimie
Abstract: Lactation, a physiologically complex process, takes place in mammary gland after parturition. The expression profile of the effective genes in lactation has not comprehensively been elucidated. Herein, meta-analysis, using publicly available microarray data, was conducted identify the differentially expressed genes (DEGs) between pre- and post-peak milk production. Three microarray datasets of Rat, Bos Taurus, and Tammar wallaby were used. Samples related to pre-peak (n = 85) and post-peak (n = 24) milk production were selected. Meta-analysis revealed 31 DEGs across the studied species. Interestingly, 10 genes, including MRPS18B, SF1, UQCRC1, NUCB1, RNF126, ADSL, TNNC1, FIS1, HES5 and THTPA, were not detected in original studies that highlights meta-analysis power in biosignature discovery. Common target and regulator analysis highlighted the high connectivity of CTNNB1, CDD4 and LPL as gene network hubs. As data originally came from three different species, to check the effects of heterogeneous data sources on DEGs, 10 attribute weighting (machine learning) algorithms were applied. Attribute weighting results showed that the type of organism had no or little effect on the selected gene list. Systems biology analysis suggested that these DEGs affect the milk production by improving the immune system performance and mammary cell growth. This is the first study employing both meta-analysis and machine learning approaches for comparative analysis of gene expression pattern of mammary glands in two important time points of lactation process. The finding may pave the way to use of publically available to elucidate the underlying molecular mechanisms of physiologically complex traits such as lactation in mammals.
Keywords: Milk production; meta-analysis; microarray; gene ontology; gene network; data mining
Rights: © 2018 Farhadian, Rafat, Hasanpur, Ebrahimi and Ebrahimie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI: 10.3389/fgene.2018.00235
Appears in Collections:Aurora harvest 3
Medicine publications

Files in This Item:
File Description SizeFormat 
hdl_117290.pdfPublished version3.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.