Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/117579
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVan Ly, D.-
dc.contributor.authorLow, R.R.J.-
dc.contributor.authorFrolich, S.-
dc.contributor.authorBartolec, T.K.-
dc.contributor.authorKafer, G.R.-
dc.contributor.authorPickett, H.A.-
dc.contributor.authorGaus, K.-
dc.contributor.authorCesare, A.J.-
dc.date.issued2018-
dc.identifier.citationMolecular Cell, 2018; 71(4):510-525-
dc.identifier.issn1097-2765-
dc.identifier.issn1097-4164-
dc.identifier.urihttp://hdl.handle.net/2440/117579-
dc.description.abstractTelomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.-
dc.description.statementofresponsibilityDavid Van Ly, Ronnie Ren Jie Low, Sonja Frölich, Tara K.Bartolec, Georgia R.Kafer, Hilda A.Pickett, Katharina Gaus, Anthony J.Cesare-
dc.language.isoen-
dc.publisherCell Press-
dc.rights© 2018 Elsevier Inc.-
dc.source.urihttp://dx.doi.org/10.1016/j.molcel.2018.06.025-
dc.subjectATM-
dc.subjectAurora B kinase-
dc.subjectDNA damage response-
dc.subjectTRF2-
dc.subjectmitosis-
dc.subjectnon-homologous end joining-
dc.subjectsuper-resolution microscopy-
dc.subjecttelomere loops-
dc.subjecttelomere protection-
dc.subjecttelomeres-
dc.titleTelomere loop dynamics in chromosome end protection-
dc.typeJournal article-
dc.identifier.doi10.1016/j.molcel.2018.06.025-
dc.relation.granthttp://purl.org/au-research/grants/arc/CE140100011-
dc.relation.granthttp://purl.org/au-research/grants/arc/LP140100967-
dc.relation.granthttp://purl.org/au-research/grants/arc/LE150100163-
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1059278-
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1037320-
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1053195-
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1106241-
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1104461-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 8
Genetics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.