Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/117711
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Nanoconfined nickel@carbon core-shell cocatalyst promoting highly efficient visible-light photocatalytic H₂ production
Other Titles: Nanoconfined nickel@carbon core-shell cocatalyst promoting highly efficient visible-light photocatalytic H(2) production
Author: Zhang, K.
Ran, J.
Zhu, B.
Ju, H.
Yu, J.
Song, L.
Qiao, S.
Citation: Small, 2018; 14(38):1-9
Publisher: Wiley
Issue Date: 2018
ISSN: 1613-6810
1613-6829
Statement of
Responsibility: 
Ke Zhang, Jingrun Ran, Bicheng Zhu, Huanxin Ju, Jiaguo Yu, Li Song and Shi-Zhang Qiao
Abstract: The realization of large‐scale solar hydrogen (H₂) production relies on the development of high‐performance and low‐cost photocatalysts driven by sunlight. Recently, cocatalysts have demonstrated immense potential in enhancing the activity and stability of photocatalysts. Hence, the rational design of highly active and inexpensive cocatalysts is of great significance. Here, a facile method is reported to synthesize Ni@C core-shell nanoparticles as a highly active cocatalyst. After merging Ni@C cocatalyst with CdS nanorod (NR), a tremendously enhanced visible‐light photocatalytic H₂‐production performance of 76.1 mmol g⁻¹ h⁻¹ is achieved, accompanied with an outstanding quantum efficiency of 31.2% at 420 nm. The state‐of‐art characterizations (e.g., synchrotron‐based X‐ray absorption near edge structure) and theoretical calculations strongly support the presence of pronounced nanoconfinement effect in Ni@C core–shell nanoparticles, which leads to controlled Ni core size, intimate interfacial contact and rapid charge transfer, optimized electronic structure, and protection against chemical corrosion. Hence, the combination of nanoconfined Ni@C with CdS nanorod leads to significantly improved photocatalytic activity and stability. This work not only for the first time demonstrates the great potential of using highly active and inexpensive Ni@C core–shell structure to replace expensive Pt in photocatalysis but also opens new avenues for synthesizing cocatalyst/photocatalyst hybridized systems with excellent performance by introducing nanoconfinement effect.
Keywords: Core-shell cocatalyst; interface engineering; nanoconfinement; photocatalyst
Rights: © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DOI: 10.1002/smll.201801705
Grant ID: http://purl.org/au-research/grants/arc/FL170100154
http://purl.org/au-research/grants/arc/DP160104866
http://purl.org/au-research/grants/arc/DP170104464
Appears in Collections:Aurora harvest 8
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.