Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/118257
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Global analyses of Higgs portal singlet dark matter models using GAMBIT
Author: Athron, P.
Balázs, C.
Beniwal, A.
Bloor, S.
Camargo-Molina, J.E.
Cornell, J.M.
Farmer, B.
Fowlie, A.
E Gonzalo, T.
Kahlhoefer, F.
Kvellestad, A.
Martinez, G.D.
Scott, P.
Vincent, A.C.
Wild, S.
White, M.
Williams, A.G.
Citation: European Physical Journal C: Particles and Fields, 2019; 79(1):38-1-8-28
Publisher: Springer
Issue Date: 2019
ISSN: 1434-6044
1434-6052
Statement of
Responsibility: 
The GAMBIT Collaboration: Peter Athron, Csaba Balázs, Ankit Beniwal, Sanjay Bloor, José Eliel Camargo-Molina, Jonathan M. Cornell, Ben Farmer, Andrew Fowlie, Tomás E. Gonzalo, Felix Kahlhoefer, Anders Kvellestad, Gregory D. Martinez, Pat Scott, Aaron C. Vincent, Sebastian Wild, Martin White, Anthony G. Williams
Abstract: We present global analyses of effective Higgs portal dark matter models in the frequentist and Bayesian statistical frameworks. Complementing earlier studies of the scalar Higgs portal, we use GAMBIT to determine the preferred mass and coupling ranges for models with vector, Majorana and Dirac fermion dark matter. We also assess the relative plausibility of all four models using Bayesian model comparison. Our analysis includes up-to-date likelihood functions for the dark matter relic density, invisible Higgs decays, and direct and indirect searches for weakly-interacting dark matter including the latest XENON1T data. We also account for important uncertainties arising from the local density and velocity distribution of dark matter, nuclear matrix elements relevant to direct detection, and Standard Model masses and couplings. In all Higgs portal models, we find parameter regions that can explain all of dark matter and give a good fit to all data. The case of vector dark matter requires the most tuning and is therefore slightly disfavoured from a Bayesian point of view. In the case of fermionic dark matter, we find a strong preference for including a CP-violating phase that allows suppression of constraints from direct detection experiments, with odds in favour of CP violation of the order of 100:1. Finally, we present DDCalc 2.0.0, a tool for calculating direct detection observables and likelihoods for arbitrary non-relativistic effective operators.
Keywords: GAMBIT Collaboration:
Rights: © The Author(s) 2018
DOI: 10.1140/epjc/s10052-018-6513-6
Grant ID: http://purl.org/au-research/grants/arc/CE1101004
http://purl.org/au-research/grants/arc/FT140100244
http://purl.org/au-research/grants/arc/FT160100274
Published version: http://dx.doi.org/10.1140/epjc/s10052-018-6513-6
Appears in Collections:Aurora harvest 8
Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.