Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/118272
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKlaebe, R.en
dc.contributor.authorKennedy, M.en
dc.contributor.authorJarrett, A.en
dc.contributor.authorBrocks, J.en
dc.date.issued2017en
dc.identifier.citationGeobiology, 2017; 15(1):65-80en
dc.identifier.issn1472-4677en
dc.identifier.issn1472-4669en
dc.identifier.urihttp://hdl.handle.net/2440/118272-
dc.description.abstractLarge magnitude (>10‰) carbon-isotope (δ¹³C) excursions recorded in carbonate-bearing sediments are increasingly used to monitor environmental change and constrain the chronology of the critical interval in the Neoproterozoic stratigraphic record that is timed with the first appearance and radiation of metazoan life. The ~10‰ Bitter Springs Anomaly preserved in Tonian-aged (1000-720 Ma) carbonate rocks in the Amadeus Basin of central Australia has been offered as one of the best preserved examples of a primary marine δ¹³C excursion because it is regionally reproducible and δ¹³C values covary in organic and carbonate carbon arguing against diagenetic exchange. However, here we show that δ¹³C values defining the excursion coincide with abrupt lithofacies changes between regularly cyclic grainstone and microbial carbonates, and desiccated red bed mudstones with interbedded evaporite and dolomite deposits, recording local environmental shifts from restricted marine conditions to alkaline lacustrine and playa settings that preserve negative (-4‰) and positive (+6‰) δ¹³C values, respectively. The stratigraphic δ¹³C pattern in both organic and carbonate carbon recurs within the basin in a similar way to associated sedimentary facies, reflecting the linkage of local paleoenvironmental conditions and δ¹³C values. These local excursions may be time transgressive or record a relative sea-level influence manifest through exposure of sub-basins isolated by sea-level fall below shallow sills, but are independent of secular seawater variation. As the shallow intracratonic setting of the Bitter Springs Formation is typical of other Neoproterozoic carbonate successions used to construct the present δ¹³C seawater record, it identifies the potential for local influences on δ¹³C excursions that are neither diagenetic nor representative of the global exogenic cycle.en
dc.description.statementofresponsibilityR.M. Klaebe, M.J. Kennedy, A.J.M. Jarrett, J.J. Brocksen
dc.language.isoenen
dc.publisherWileyen
dc.rights© 2016 John Wiley & Sons Ltden
dc.subjectCarbon isotopes; geologic sedimentsen
dc.titleLocal paleoenvironmental controls on the carbon-isotope record defining the Bitter Springs Anomalyen
dc.typeJournal articleen
dc.identifier.doi10.1111/gbi.12217en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP120100104en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP110104367en
dc.relation.granthttp://purl.org/au-research/grants/arc/LP120200086en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP1095247en
pubs.publication-statusPublisheden
Appears in Collections:Geology & Geophysics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.