Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Simulated shift work disrupts maternal circadian rhythms and metabolism, and increases gestation length in sheep
Author: Gatford, K.
Kennaway, D.
Liu, H.
Kleemann, D.
Kuchel, T.
Varcoe, T.
Citation: The Journal of Physiology, 2019; 597(7):1889-1904
Publisher: Physiological Society
Issue Date: 2019
ISSN: 0022-3751
Statement of
Kathryn L. Gatford, David J. Kennaway, Hong Liu, David O. Kleemann, Timothy R Kuchel, Tamara J. Varcoe
Abstract: KEY POINTS:Shift work impairs metabolic health, although its effects during pregnancy are not well understood We evaluated the effects of a simulated shift work protocol for one-third, two-thirds or all of pregnancy on maternal and pregnancy outcomes in sheep. Simulated shift work changed the timing of activity, disrupted hormonal and cellular rhythms, and impaired maternal glucose tolerance during early pregnancy. Gestation length was increased in twin pregnancies, whereas singleton lambs were lighter at a given gestational age if mothers were subjected to shift work conditions in the first one-third of pregnancy. Exposure to rotating night and day shifts, even if only in early pregnancy, may adversely affect maternal metabolic and pregnancy outcomes. ABSTRACT:Shift workers are at increased risk of developing type 2 diabetes and obesity; however, the impact during pregnancy on maternal metabolism is unknown. Using a large animal model, we assessed the impact of simulated shift work (SSW) exposure during pregnancy on maternal circadian rhythms, glucose tolerance and pregnancy outcomes. Following mating, ewes were randomly allocated to a control photoperiod (CON 12 h light, 12 h dark) or to SSW, where the timing of light exposure and food presentation was reversed twice each week for one-third, two-thirds or all of pregnancy. Maternal behaviour followed SSW cycles with increased activity during light exposure and feeding. Melatonin rhythms resynchronized within 2 days of the photoperiod shift, whereas peripheral circadian rhythms were arrhythmic. SSW impaired glucose tolerance (+29%, P = 0.019) and increased glucose-stimulated insulin secretion (+32%, P = 0.018) in ewes with a singleton fetus in early but not late gestation. SSW exposure did not alter rates of miscarriage or stillbirth, although it extended gestation length in twin pregnancies (+2.4 days, P = 0.032). Relative to gestational age, birth weight was lower in singleton progeny of SSW than CON ewes (-476 g, P = 0.016). These results have implications for the large number of women currently engaged in shift work, and further studies are required to determine progeny health impacts.
Keywords: Circadian rhythms
shift work
Rights: © 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
DOI: 10.1113/JP277186
Grant ID:
Appears in Collections:Aurora harvest 8
Medicine publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.