Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Active β-catenin signaling in the small intestine of humans during infancy
Other Titles: Active beta-catenin signaling in the small intestine of humans during infancy
Author: Dudhwala, Z.
Drew, P.
Howarth, G.
Moore, D.
Cummins, A.
Citation: Digestive Diseases and Sciences, 2019; 64(1):76-83
Publisher: Springer Nature
Issue Date: 2019
ISSN: 0163-2116
Statement of
Zenab M. Dudhwala, Paul A. Drew, Gordon S. Howarth, David Moore, Adrian G. Cummins
Abstract: BACKGROUND:Wnt-β-catenin signaling is essential for homeostasis of intestinal stem cells in mice and is thought to promote intestinal crypt fission. AIMS:The aim of this study was to investigate Wnt-β-catenin signaling in intestinal crypts of human infants. METHODS:Duodenal biopsies from nine infants (mean, range 0.9 years, 0.3-2 years) and 11 adults (mean, range 43 years, 34-71 years) were collected endoscopically. Active β-catenin signaling was assessed by cytoplasmic and nuclear β-catenin, nuclear c-Myc, and cytoplasmic Axin-2 expression in the base of crypts. Tissues were stained by an immunoperoxidase staining technique and quantified as pixel energy using cumulative signal analysis. Data were expressed as mean ± SD and significance assessed by Student's t test. RESULTS:Crypt fission was significantly higher in infants compared to adults (16 ± 8.6% versus 0.7 ± 0.6%, respectively, p < 0.0001). Expression of cytoplasmic and nuclear β-catenin was 1.8-fold (p < 0.0001) and 2.9-fold (p < 0.0001) higher in infants, respectively, while cytoplasmic Axin-2 was 3.1-fold (p < 0.0001) increased in infants. c-Myc expression was not significantly different between infants and adults. Expression was absent in Paneth cells but present in the transit amplifying zone of crypts. Crypt base columnar cells, which were intercalated between Paneth cells, expressed c-Myc. CONCLUSIONS:Wnt-β-catenin signaling was active in crypt base columnar cells (i.e., intestinal stem cells) in human infants. This signaling could promote crypt fission during infancy. Wnt-β-catenin signaling likely acts in concert with other pathways to promote postnatal growth.
Keywords: Crypt fission
Intestinal growth
Small intestine
Rights: © Springer Science+Business Media, LLC, part of Springer Nature 2018
DOI: 10.1007/s10620-018-5286-y
Appears in Collections:Aurora harvest 8
Medicine publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.