Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/119210
Type: Conference paper
Title: Enhancing the relative capture width of submerged point absorbing wave energy converters
Author: Ding, B.
Sergiienko, N.
Meng, F.
Cazzolato, B.
Hardy, P.
Arjomandi, M.
Citation: Proceedings of the 4th Asian Wave and Tidal Energy Conference: AWTEC 2018, 2018 / pp.1-10
Publisher: AWTEC
Publisher Place: online
Issue Date: 2018
Conference Name: Asian Wave and Tidal Energy Conference (AWTEC) (09 Sep 2018 - 13 Sep 2018 : Taipei, Taiwan)
Statement of
Responsibility: 
Boyin Ding, Nataliia Sergiienko, Fantai Meng, Benjamin Cazzolato, Peter Hardy, and Maziar Arjomandi
Abstract: Point absorbing wave energy converters account for 53% of the existing wave energy converter prototype designs. Generally, point absorbers are designed to operate on or just below the water surface, extracting wave power from the heaving motion. In recent years, an increasing amount of attention has been given to fully submerged point absorbers that demonstrate better survivability under storm conditions and capability of extracting wave power from motion in multiple degrees of freedom. This paper investigates three submerged point absorber designs operating in three degrees of freedom: a generic axisymmetric spherical buoy with a single tether power-take-off; and two modified types, one employing an asymmetric mass distribution buoy and the other employing a three tether power- take-off arrangement. Simulations in the frequency domain were used to study the behaviour of the three point absorber designs from the perspectives of dynamic response, power absorption principles and capabilities, and power-take-off requirements. Compared to the generic single tether spherical buoy design, both modified submerged point absorber designs demonstrate considerable improvements in their performance indices (e.g. the relative capture width and the power to PTO force ratio), while exhibit additional challenges in their implementations.
Rights: Copyright status unknown
RMID: 0030107407
Grant ID: http://purl.org/au-research/grants/arc/LP130100117
Appears in Collections:Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.