Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/119596
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: Discriminative clustering of high-dimensional data using generative modeling
Author: Abdi, M.
Lim, C.
Mohamed, S.
Nahavandi, S.
Abbasnejad, E.
Van Den Hengel, A.
Citation: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2019 / vol.2018-August, pp.799-802
Publisher: IEEE
Issue Date: 2019
Series/Report no.: Midwest Symposium on Circuits and Systems Conference Proceedings
ISBN: 9781538673928
ISSN: 1548-3746
Conference Name: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (05 Aug 2018 - 08 Aug 2018 : Windsor, Canada)
Statement of
Responsibility: 
Masoud Abdi, Chee Peng Lim, Shady Mohamed, Saeid Nahavandi, Ehsan Abbasnejad, Anton Van Den Hengel
Abstract: We approach unsupervised clustering from a generative perspective. We hybridize Variational Autoencoder (VAE) and Generative Adversarial Network (GAN) in a novel way to obtain a vigorous clustering model that can effectively be applied to challenging high-dimensional datasets. The powerful inference of the VAE is used along with a categorical discriminator that aims to obtain a cluster assignment of the data, by maximizing the mutual information between the observations and their predicted class distribution. The discriminator is regularized with examples produced by an adversarial generator, whose task is to trick the discriminator into accepting them as real data. We demonstrate that using a shared latent representation greatly helps with discriminative power of our model and leads to a powerful unsupervised clustering model. The method can be applied to raw data in a high-dimensional space. Training can be performed end-to-end from randomly-initialized weights by alternating stochastic gradient descent on the parameters of the model. Experiments on two datasets including the challenging MNIST dataset show that the proposed method performs better than the existing models. Additionally, our method yields an efficient generative model.
Keywords: Clustering; unsupervised learning; generative adversarial network; variational autoencoder; deep learning
Rights: ©2018 IEEE
RMID: 0030111130
DOI: 10.1109/MWSCAS.2018.8623970
Appears in Collections:Australian Institute for Machine Learning publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.