Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Surface functionalization of exposed core glass optical fiber for metal ion sensing
Author: Bachhuka, A.
Heng, S.
Vasilev, K.
Kostecki, R.
Abell, A.
Ebendorff-Heidepriem, H.
Citation: Sensors, 2019; 19(8):1-8
Publisher: MDPI AG
Issue Date: 2019
ISSN: 1424-8220
Statement of
Akash Bachhuka, Sabrina Heng, Krasimir Vasilev, Roman Kostecki, Andrew Abell and Heike Ebendorff-Heidepriem
Abstract: One of the biggest challenges associated with exposed core glass optical fiber-based sensing is the availability of techniques that can be used to generate reproducible, homogeneous and stable surface coating. We report a one step, solvent free method for surface functionalization of exposed core glass optical fiber that allows achieving binding of fluorophore of choice for metal ion sensing. The plasma polymerization-based method yielded a homogeneous, reproducible and stable coating, enabling high sensitivity aluminium ion sensing. The sensing platform reported in this manuscript is versatile and can be used to bind different sensing molecules opening new avenues for optical fiber-based sensing.
Keywords: aluminium sensing
exposed core glass optical fibers
microstructured glass optical fibers
plasma polymerization
surface functionalization
Rights: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
DOI: 10.3390/s19081829
Grant ID:
Published version:
Appears in Collections:Aurora harvest 4
Chemical Engineering publications

Files in This Item:
File Description SizeFormat 
hdl_119598.pdfPublished version863.07 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.