Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: On the critical free-surface flow over localised topography
Author: Keeler, J.
Binder, B.
Blyth, M.
Citation: Journal of Fluid Mechanics, 2017; 832:73-96
Publisher: Cambridge University Press
Issue Date: 2017
ISSN: 0022-1120
Statement of
J.S. Keeler, B.J. Binder and M.G. Blyth
Abstract: Flow over bottom topography at critical Froude number is examined with a focus on steady, forced solitary wave solutions with algebraic decay in the far field, and their stability. Using the forced Korteweg–de Vries (fKdV) equation the weakly nonlinear steady solution space is examined in detail for the particular case of a Gaussian dip using a combination of asymptotic analysis and numerical computations. Non-uniqueness is established and a seemingly infinite set of steady solutions is uncovered. Non-uniqueness is also demonstrated for the fully nonlinear problem via boundary-integral calculations. It is shown analytically that critical flow solutions have algebraic decay in the far field both for the fKdV equation and for the fully nonlinear problem and, moreover, that the leading-order form of the decay is the same in both cases. The linear stability of the steady fKdV solutions is examined via eigenvalue computations and by a numerical study of the initial value fKdV problem. It is shown that there exists a linearly stable steady solution in which the deflection from the otherwise uniform surface level is everywhere negative.
Keywords: Channel flow; solitary waves; waves/free-surface flows
Rights: © Cambridge University Press 2017
DOI: 10.1017/jfm.2017.639
Published version:
Appears in Collections:Aurora harvest 4
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.