Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: The thermo-tectonic evolution of the southern Congo Craton margin as determined from apatite and muscovite thermochronology
Author: Alessio, B.
Glorie, S.
Collins, A.
Jourdan, F.
Jepson, G.
Nixon, A.
Siegfried, P.
Clark, C.
Citation: Tectonophysics, 2019; 766:398-415
Publisher: Elsevier
Issue Date: 2019
ISSN: 0040-1951
Statement of
Brandon L. Alessio, Stijn Glorie, Alan S. Collins, Fred Jourdan, Gilby Jepson, Angus Nixon, Pete R. Siegfried, Chris Clarke
Abstract: The Southern Irumide Belt (SIB) of Zambia consists of predominantly Mesoproterozoic terranes that record a pervasive tectono-metamorphic overprint from collision between the Congo and Kalahari cratons in the final stages of Gondwana amalgamation. This study applies multi-method thermochronology to samples throughout southern Zambia to constrain the post-collisional, Phanerozoic thermo-tectonic evolution of the region. U-Pb apatite and 40Ar/39Ar muscovite data are used to constrain the cooling history of the region following Congo–Kalahari collision, and reveal ages of c. 550–450 Ma. Variations in the recorded cooling ages are interpreted to relate to localised post-tectonic magmatism and the proximity of analysed samples to the Congo–Kalahari suture. Apatite fission track data are used to constrain the low-temperature thermo-tectonic evolution of the region and identify mean central ages of c. 320–300, 210–200 and 120–110 Ma. Thermal modelling of these samples identifies a number of thermal events occurring in the region throughout the Phanerozoic. Carboniferous to Permian–Triassic heating is suggested to relate to the development of Karoo rift basins found throughout central Africa and constrain the timing of sedimentation in the basin. Permian to Jurassic cooling is identified in a number of samples, reflecting exhumation as a result of the Mauritanian–Variscan and Gondwanide orogenies. Subsequent cooling of the majority of samples occurs from the Cretaceous and persists until present, reflecting exhumation in response to larger scale rifting associated with the break-up of Gondwana. Each model reveals a later phase of enhanced cooling beginning at c. 30 Ma that, if not an artefact of modelling, corresponds to the development of the East African Rift System. The obtained thermochronological data elucidate the previously unconstrained thermal evolution of the SIB, and provides a refined regional framework for constraining the tectonic history of central Africa throughout the Phanerozoic.
RMID: 0030120820
DOI: 10.1016/j.tecto.2019.06.004
Grant ID:
Appears in Collections:Geology & Geophysics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.