Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/120502
Type: Thesis
Title: [EMBARGOED] UHF Energy Harvesting and Power Management
Author: Sun, Menghan
Issue Date: 2019
School/Discipline: School of Electrical and Electronic Engineering
Abstract: As we are entering the era of Internet of Things (i.e. IoT), the physical devices become increasingly connected with each other than ever before. The connection between devices is achieved through wireless communication schemes, which unfortunately consume a significant amount of energy. This is undesirable for devices which are not directly connected to power. This is because these devices will essentially carry batteries to supply the needed energy for these operations and the batteries will eventually be depleted. This motivates the need to operate these devices off harvested energy. UHF energy harvesting, as an enabling technology for the UHF RFID, stands out amongst other energy harvesting approaches as it does not heavily rely on the natural surrounding environment and also offers a very good wireless operating range from its radiating energy source. Unlike the RFID, the power consumption and the operational range requirement of these IoT devices can vary significantly. Thus, the design of the RF energy harvesting front-end and the power management need to be re-thought for specific applications. To that end, in this thesis, discussions mainly evolve around the design of UHF energy harvesters and their associated power management units using lower power analog approaches. First, we present the background of the low power UHF energy harvesting, specially threshold-compensated rectifiers will be presented as a key technology in this area and this will be used as a build practical harvester for the UHF RFID application. Secondly, key issues with the threshold compensation will be identified and this is exploited either (i) to improve the dynamic power conversion efficiency of the harvester, (ii) to improve dynamic settling behaviour of the harvester. To exploit the ”left-over” harvested energy, an intelligent integrated power management solution has been proposed. Finally, the charge-burst approach is exploited to implement an energy harvester with -40 dBm input power sensitivity.
Advisor: Al-Sarawi, Said
Abbott, Derek
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 2019
Keywords: UHF
energy harvesting
analog IC design
RFID
IoT
Provenance: This thesis is currently under Embargo and not available.
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Sun2019_PhD.pdfLibrary staff access only2.27 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.