Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/121155
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, J.en
dc.contributor.authorZhang, J.en
dc.contributor.authorWang, D.en
dc.contributor.authorLi, D.en
dc.contributor.authorKe, J.en
dc.contributor.authorWang, S.en
dc.contributor.authorLiu, S.en
dc.contributor.authorXiao, H.en
dc.contributor.authorWang, R.en
dc.date.issued2019en
dc.identifier.citationACS Sustainable Chemistry and Engineering, 2019; 7(14):12428-12438en
dc.identifier.issn2168-0485en
dc.identifier.issn2168-0485en
dc.identifier.urihttp://hdl.handle.net/2440/121155-
dc.description.abstractNiCo2O4 nanodots decorated graphitic carbon nitride (g-C3N4) heterojunction was synthesized based on the energy band matching theory for efficient photocatalytic hydrogen evolution reaction under simulated solar irradiation. NiCo2O4 species (Eg = 1.77 eV) are uniformly anchored on the surface of g-C3N4 for the formation of NiCo2O4/g-C3N4 heterojunction to enhance the light response of the hybrid catalyst. The NiCo2O4/g-C3N4 heterojunction generates more structure defects, favoring the photocatalysis by accelerating the separation and transfer of the photoexcited electrons and holes and suppressing the recombination of the photoinduced carries. At the heterojunction interface, the photogenerated electrons transfer from the conduction band of NiCo2O4 to that of g-C3N4, while the photogenerated holes transfer from the valence band of g-C3N4 to that of NiCo2O4, making more active electrons participate in the generation of hydrogen. Compared with the pristine g-C3N4 and NiCo2O4, a NiCo2O4/g-C3N4 heterojunction sample (NC-6%) shows a hydrogen generation rate at 462.4 μmol·g–1·h–1, reaching 2.2 times and 400 times higher than that of g-C3N4 and NiCo2O4, respectively.en
dc.description.statementofresponsibilityJie Liu, Jingnan Zhang, Ding Wang, Deyuan Li, Jun Ke, Shaobin Wang, Shaomin Liu, Huining Xiao, Rujie Wangen
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.rights© 2019 American Chemical Society.en
dc.subjectPhotocatalysis; hydrogen evolution reaction; fine dispersion NiCo2O4/g-C3N4 heterojunction; band realignmenten
dc.titleHighly dispersed NiCo₂O₄ nanodots decorated three-dimensional g-C₃N₄ for enhanced photocatalytic H₂ generationen
dc.title.alternativeHighly dispersed NiCo(2)O(4) nanodots decorated three-dimensional g-C(3)N(4) for enhanced photocatalytic H(2) generationen
dc.typeJournal articleen
dc.identifier.rmid0030131406en
dc.identifier.doi10.1021/acssuschemeng.9b01965en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP170104264en
dc.identifier.pubid491299-
pubs.library.collectionChemistry and Physics publicationsen
pubs.library.teamDS10en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidWang, S. [0000-0002-1751-9162]en
Appears in Collections:Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.