Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/121456
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSinghal, G.-
dc.contributor.authorMorgan, J.-
dc.contributor.authorJawahar, M.C.-
dc.contributor.authorCorrigan, F.-
dc.contributor.authorJaehne, E.J.-
dc.contributor.authorToben, C.-
dc.contributor.authorBreen, J.-
dc.contributor.authorPederson, S.M.-
dc.contributor.authorHannan, A.J.-
dc.contributor.authorBaune, B.T.-
dc.date.issued2019-
dc.identifier.citationCognitive, Affective and Behavioral Neuroscience, 2019; 19(5):1143-1169-
dc.identifier.issn1530-7026-
dc.identifier.issn1531-135X-
dc.identifier.urihttp://hdl.handle.net/2440/121456-
dc.description.abstractPhysical exercise (PE) and environmental enrichment (EE) have consistently been shown to modulate behavior and neurobiological mechanisms. The current literature lacks evidence to confirm the relationship between PE and EE, if any, and whether short-term treatment with PE, EE, or PE+EE could be considered to correct age-related behavioral deficits. Three-, 8-, and 13-month-old C57BL/6 mice were assigned to either PE, EE, or PE+EE treatment groups (n = 12-16/group) for 4 weeks before behavioral testing and were compared to controls. Differential effects of the treatments on various behaviors and hippocampal gene expression were measured using an established behavioral battery and high-throughput qPCR respectively. Short-term EE enhanced locomotor activity at 9 and 14 months of age, whereas the combination of PE and EE reduced locomotor activity in the home cage at 14 months. Short-term EE also was found to reverse the age-related increase in anxiety at 9 months and spatial memory deficits at 14 months of age. Conversely, short-term PE induced spatial learning impairment and depressive-like behavior at four months but showed no effects in 9- and 14-month-old mice. PE and PE+EE, but not EE, modified the expression of several hippocampal genes at 9 months of age compared with control mice. In conclusion, short-term EE may help to alleviate age-related cognitive decline and increase in anxiety, without altering hippocampal gene expression. On the contrary, PE is detrimental at a young age for both affective-like behaviors and spatial learning and memory but showed no effects at middle and late middle age despite hippocampal gene expression alterations.-
dc.description.statementofresponsibilityGaurav Singhal, Julie Morgan, Magdalene C. Jawahar, Frances Corrigan, Emily J. Jaehne, Catherine Toben, James Breen, Stephen M. Pederson, Anthony J. Hannan, Bernhard T. Baune-
dc.language.isoen-
dc.publisherSpringer-
dc.rights© The Psychonomic Society, Inc. 2019-
dc.source.urihttp://dx.doi.org/10.3758/s13415-019-00743-x-
dc.subjectAging-
dc.subjectAnxiety-
dc.subjectBehavior-
dc.subjectBrain-
dc.subjectCognition-
dc.subjectDepression-
dc.subjectEnvironmental enrichment-
dc.subjectExercise-
dc.subjectGene-
dc.titleShort-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression-
dc.typeJournal article-
dc.identifier.doi10.3758/s13415-019-00743-x-
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1043771-
pubs.publication-statusPublished-
dc.identifier.orcidMorgan, J. [0000-0001-8245-218X]-
dc.identifier.orcidJawahar, M.C. [0000-0001-7136-1848]-
dc.identifier.orcidCorrigan, F. [0000-0001-6150-8893]-
dc.identifier.orcidJaehne, E.J. [0000-0003-0532-1623]-
dc.identifier.orcidToben, C. [0000-0001-8399-4108]-
dc.identifier.orcidBreen, J. [0000-0001-6184-0925]-
dc.identifier.orcidPederson, S.M. [0000-0001-8197-3303]-
dc.identifier.orcidBaune, B.T. [0000-0001-6548-426X]-
Appears in Collections:Aurora harvest 8
Psychology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.