Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/122501
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, C.en
dc.contributor.authorJiao, Y.en
dc.contributor.authorZheng, Y.en
dc.contributor.authorLuo, J.en
dc.contributor.authorDavey, K.en
dc.contributor.authorQiao, S.en
dc.date.issued2019en
dc.identifier.citationChem, 2019; 5(9):2429-2441en
dc.identifier.issn2451-9308en
dc.identifier.issn2451-9294en
dc.identifier.urihttp://hdl.handle.net/2440/122501-
dc.description.abstractThe rational modulation of reaction intermediates is critical to achieving high-performance heterogeneous catalysis. However, practical realization remains challenging. Using water electrocatalysis as a model reaction, we report an interfacial-bond-induced intermediate modulation to accelerate the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by hybridizing a 2D nickel metal-organic framework (MOF) and Pt nanocrystals into a heterostructure. The design is initially verified via theoretical calculations, indicating charge relocation on newly formed Ni–O–Pt interfacial bonds for increased OH* adsorption energy together with reduced H* adsorption energy. Experimental findings confirm the formation of the Ni–O–Pt bonds, which electronically modify the heterostructure to increase electron density for Pt and the high-energy Ni 3d state for the MOF, optimizing the adsorption for H* and OH*, respectively. This hybridized material delivered HER activity of 7.92 mA μg−1 Pt, which is among the best reported for alkaline electrocatalysts, and an improved OER activity.en
dc.description.statementofresponsibilityChunxian Guo, Yan Jiao, Yao Zheng, Jun Luo, Kenneth Davey, Shi-Zhang Qiaoen
dc.language.isoenen
dc.publisherElsevieren
dc.rights© 2019 Elsevier Inc.en
dc.titleIntermediate modulation on noble metal hybridized to 2D metal-organic framework for accelerated water electrocatalysisen
dc.typeJournal articleen
dc.identifier.rmid0030135514en
dc.identifier.doi10.1016/j.chempr.2019.06.016en
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154en
dc.relation.granthttp://purl.org/au-research/grants/arc/DE160101293en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP160104866en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP170104464en
dc.identifier.pubid496418-
pubs.library.collectionChemical Engineering publicationsen
pubs.library.teamDS05en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidJiao, Y. [0000-0003-1329-4290]en
dc.identifier.orcidZheng, Y. [0000-0002-2411-8041]en
dc.identifier.orcidDavey, K. [0000-0002-7623-9320]en
dc.identifier.orcidQiao, S. [0000-0002-1220-1761]en
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.