Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/122741
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Renewal theory as a universal quantitative framework to characterize phase singularity regeneration in mammalian cardiac fibrillation
Author: Dharmaprani, D.
Schopp, M.
Kuklik, P.
Chapman, D.
Lahiri, A.
Dykes, L.
Xiong, F.
Aguilar, M.
Strauss, B.
Mitchell, L.
Pope, K.
Meyer, C.
Willems, S.
Akar, F.G.
Nattel, S.
McGavigan, A.D.
Ganesan, A.N.
Citation: Circulation: Arrhythmia and Electrophysiology, 2019; 12(12):e007569
Publisher: American Heart Association
Issue Date: 2019
ISSN: 1941-3084
1941-3084
Statement of
Responsibility: 
Dhani Dharmaprani, Madeline Schopp, Pawel Kuklik, Darius Chapman, Anandaroop Lahiri ... Lewis Mitchell ... et al.
Abstract: BACKGROUND: Despite a century of research, no clear quantitative framework exists to model the fundamental processes responsible for the continuous formation and destruction of phase singularities (PS) in cardiac fibrillation. We hypothesized PS formation/destruction in fibrillation could be modeled as self-regenerating Poisson renewal processes, producing exponential distributions of interevent times governed by constant rate parameters defined by the prevailing properties of each system. METHODS: PS formation/destruction were studied in 5 systems: (1) human persistent atrial fibrillation (n=20), (2) tachypaced sheep atrial fibrillation (n=5), (3) rat atrial fibrillation (n=4), (5) rat ventricular fibrillation (n=11), and (5) computer-simulated fibrillation. PS time-to-event data were fitted by exponential probability distribution functions computed using maximum entropy theory, and rates of PS formation and destruction (λf/λd) determined. A systematic review was conducted to cross-validate with source data from literature. RESULTS: In all systems, PS lifetime and interformation times were consistent with underlying Poisson renewal processes (human: λf, 4.2%/ms±1.1 [95% CI, 4.0-5.0], λd, 4.6%/ms±1.5 [95% CI, 4.3-4.9]; sheep: λf, 4.4%/ms [95% CI, 4.1-4.7], λd, 4.6%/ms±1.4 [95% CI, 4.3-4.8]; rat atrial fibrillation: λf, 33%/ms±8.8 [95% CI, 11-55], λd, 38%/ms [95% CI, 22-55]; rat ventricular fibrillation: λf, 38%/ms±24 [95% CI, 22-55], λf, 46%/ms±21 [95% CI, 31-60]; simulated fibrillation λd, 6.6-8.97%/ms [95% CI, 4.1-6.7]; R2 ≥0.90 in all cases). All PS distributions identified through systematic review were also consistent with an underlying Poisson renewal process. CONCLUSIONS: Poisson renewal theory provides an evolutionarily preserved universal framework to quantify formation and destruction of rotational events in cardiac fibrillation.
Keywords: atrial fibrillation; phase singularities; renewal theory; stochastic processes; ventricular fibrillation
Rights: © 2019 American Heart Association, Inc.
RMID: 1000011352
DOI: 10.1161/CIRCEP.119.007569
Grant ID: http://purl.org/au-research/grants/nhmrc/1063754
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.