Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Engineering of high-performance potassium-ion capacitors using polyaniline-derived N-doped carbon nanotubes anode and laser scribed graphene oxide cathode
Author: Moussa, M.
Al-Bataineh, S.
Losic, D.
Dubal, D.
Citation: Applied Materials Today, 2019; 16:425-434
Publisher: Elsevier
Issue Date: 2019
ISSN: 2352-9407
Statement of
Mahmoud Moussa, Sameer A. Al-Bataineh, Dusan Losic, Deepak P. Dubal
Abstract: Potassium (K) ion storage technology is recently receiving a great attention due to their low-cost and enormous abundance on the earth compared to lithium. However, the technology is still at a scientific research stage and exploring suitable electrode materials is a key challenge. Herein, we have engineered nitrogen doped carbon nanotubes (N-CNTs) as a promising anode material for K-ion storage through pyrolytic decomposition of polyaniline nanotubes (PAni-NTs). These N-CNTs delivers high reversible capacity with good rate performance and cycling stability. Taking advantage of these features, a potassium-ion hybrid capacitor (KIHC) is constructed using N-CNTs as battery-type anode and 3-dimensional (3D) laser scribed graphene (LSG) as capacitor-type cathode electrodes. The device displays a high energy density of 65 W h/kg, a high power output of 1000 W/kg, as well as a long cycling life (91% capacity retention over 5000 cycles). Thus, such an advanced energy storage system can satisfy the requirements of high power and high energy densities simultaneously in diverse applications at low-cost.
Keywords: N-doped carbon nanotubes; graphene; potassium-ion-capacitor
Rights: © 2019 Elsevier Ltd. All rights reserved.
RMID: 0030132825
DOI: 10.1016/j.apmt.2019.07.003
Grant ID:
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.