Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Benefits of explicit treatment of zero flows in probabilistic hydrological modelling of ephemeral catchments
Author: McInerney, D.
Kavetski, D.
Thyer, M.
Lerat, J.
Kuczera, G.
Citation: Water Resources Research, 2019; 55(12):11035-11060
Publisher: American Geophysical Union
Issue Date: 2019
ISSN: 1944-7973
Statement of
David McInerney, Dmitri Kavetski, Mark Thyer, Julien Lerat, and George Kuczera
Abstract: Probabilistic modeling of streamflow in ephemeral catchments, where streamflow is frequently zero or negligible, is a major scientific and operational challenge. This paper evaluates the benefits of an explicit treatment of zero flows in the residual error models used for hydrological model calibration and prediction. In this approach, the lower bound of zero for streamflow is implemented using a censoring approach. The explicit approach is compared to a simpler pragmatic approach, which imposes the zero streamflow bound in prediction but not in calibration. Following a theoretical exposition, empirical comparisons are reported using a daily rainfall‐runoff model (GR4J), four residual error schemes (based on log, log‐sinh, and Box‐Cox [BC] transformations with λ = 0.2 and 0.5), 74 Australian catchments with diverse hydroclimatology, and five performance metrics (reliability, precision, bias, proportion of zero flow days, and Continuous Ranked Probability skill score). The key findings are as follows: (1) in mid‐ephemeral catchments (5–50% zero flows) the explicit approach improves predictive performance, especially reliability, through better characterization of residual errors; (2) BC0.2 and BC0.5 schemes are Pareto optimal in mid‐ephemeral catchments (when the explicit approach is used): BC0.2 achieves better reliability and is recommended for probabilistic prediction, whereas BC0.5 attains lower volumetric bias; (3) in low‐ephemeral catchments (<5% zero flows) the pragmatic approach is sufficient; (4) in high‐ephemeral catchments (>50% zero flows) theoretical limitations result in poor performance of these particular explicit and pragmatic approaches, and further development is needed. The findings provide guidance on improving probabilistic streamflow predictions in ephemeral catchments.
Description: First published: 04 August 2019
Rights: ©2019. American Geophysical Union. All Rights Reserved.
DOI: 10.1029/2018WR024148
Grant ID:
Appears in Collections:Aurora harvest 8
Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.