Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation
Author: Shan, J.
Zheng, Y.
Shi, B.
Davey, K.
Qiao, S.Z.
Citation: ACS Energy Letters, 2019; 4(11):2719-2730
Publisher: ACS Publications
Issue Date: 2019
ISSN: 2380-8195
Statement of
Jieqiong Shan, Yao Zheng, Bingyang Shi, Kenneth Davey, Shi-Zhang Qiao
Abstract: Although proton exchange membrane (PEM) water electrolyzers offer a promising means for generation of hydrogen fuel from solar and wind energy, in acidic environments the corresponding anodic oxygen evolution reaction (OER) remains a bottleneck. Because the activity and stability of electrocatalysts depend significantly on physicochemical properties, material surface and interface engineering can offer a practical way to boost performance. To date, significant advances have been made using a judicious combination of advanced theoretical computations and spectroscopic characterizations. To provide a critical assessment of this field, we focus on the establishment of material property–catalytic activity relationships. We start with a detailed exploration of prevailing OER mechanisms in acid solution through evaluating the role of catalyst lattice oxygen. We then critically review advances in surface and interface engineering in acidic OER electrocatalysts from both experimental and theoretical perspectives. Finally, a few promising research orientations are proposed to inspire future investigation of high-performance PEM catalysts.
Keywords: Oxides; radiology; electrocatalysts; catalysts; transition metals
Rights: © 2019 American Chemical Society
RMID: 1000004250
DOI: 10.1021/acsenergylett.9b01758
Grant ID:
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.