Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/124185
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Porous carbons: structure-oriented design and versatile applications
Author: Tian, W.
Zhang, H.
Duan, X.
Sun, H.
Shao, G.
Wang, S.
Citation: Advanced Functional Materials, 2020; 30(17):1909265-1-1909265-41
Publisher: Wiley
Issue Date: 2020
ISSN: 1616-3028
1616-3028
Statement of
Responsibility: 
Wenjie Tian, Huayang Zhang, Xiaoguang Duan, Hongqi Sun, Guosheng Shao, Shaobin Wang
Abstract: Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided.
Keywords: Carbon capture: electrocatalysis; energy storage; nanoporous carbon materials; water treatment
Description: First published:24 February 2020
Rights: © 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DOI: 10.1002/adfm.201909265
Grant ID: http://purl.org/au-research/grants/arc/DP170104264
http://purl.org/au-research/grants/arc/DP190103548
Appears in Collections:Aurora harvest 4
Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.