Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFroggatt, C.D.en
dc.contributor.authorNevzorov, R.en
dc.contributor.authorNielsen, H.B.en
dc.contributor.authorThomas, A.W.en
dc.identifier.citationInternational Journal of Modern Physics A, 2020; 35(1):1-14en
dc.description.abstractIn N=1 supergravity, the scalar potential may have supersymmetric (SUSY) and non-supersymmetric Minkowski vacua (associated with supersymmetric and physical phases) with vanishing energy density. In the supersymmetric Minkowski (second) phase, some breakdown of SUSY may be induced by nonperturbative effects in the observable sector that give rise to a tiny positive vacuum energy density. Postulating the exact degeneracy of the physical and second vacua as well as assuming that at high energies the couplings in both phases are almost identical, one can estimate the dark energy density in these vacua. It is mostly determined by the SUSY breaking scale MS in the physical phase. Exploring the two-loop renormalization group (RG) flow of couplings in these vacua, we find that the measured value of the cosmological constant can be reproduced if MS varies from 20 TeV to 400 TeV. We also argue that this prediction for the SUSY breaking scale is consistent with the upper bound on MS in the higgsino dark matter scenario.en
dc.description.statementofresponsibilityC.D. Froggatt, R. Nevzorov, H.B. Nielsen, A.W. Thomasen
dc.publisherWorld Scientificen
dc.rights© World Scientific Publishing Companyen
dc.subjectSupergravity; supersymmetry; cosmological constant; dark matteren
dc.titlePredicting the SUSY breaking scale in SUGRA models with degenerate vacuaen
dc.typeJournal articleen
pubs.library.collectionPhysics publicationsen
dc.identifier.orcidThomas, A.W. [0000-0003-0026-499X]en
Appears in Collections:Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.