Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Comparison of hyperspectral versus traditional field measurements of fractional ground cover in the Australian arid zone
Author: Fisk, C.
Clarke, K.D.
Lewis, M.M.
Citation: Remote Sensing, 2019; 11(23):2825-1-2825-13
Publisher: MDPI AG
Issue Date: 2019
ISSN: 2072-4292
Statement of
Claire Fisk, Kenneth D. Clarke and Megan M. Lewis
Abstract: The collection of high-quality field measurements of ground cover is critical for calibration and validation of fractional ground cover maps derived from satellite imagery. Field-based hyperspectral ground cover sampling is a potential alternative to traditional in situ techniques. This study aimed to develop an effective sampling design for spectral ground cover surveys in order to estimate fractional ground cover in the Australian arid zone. To meet this aim, we addressed two key objectives: (1) Determining how spectral surveys and traditional step-point sampling compare when conducted at the same spatial scale and (2) comparing these two methods to current Australian satellite-derived fractional cover products. Across seven arid, sparsely vegetated survey sites, six 500-m transects were established. Ground cover reflectance was recorded taking continuous hyperspectral readings along each transect while step-point surveys were conducted along the same transects. Both measures of ground cover were converted into proportions of photosynthetic vegetation, non-photosynthetic vegetation, and bare soil for each site. Comparisons were made of the proportions of photosynthetic vegetation, non-photosynthetic vegetation, and bare soil derived from both in situ methods as well as MODIS and Landsat fractional cover products. We found strong correlations between fractional cover derived from hyperspectral and step-point sampling conducted at the same spatial scale at our survey sites. Comparison of the in situ measurements and image-derived fractional cover products showed that overall, the Landsat product was strongly related to both in situ methods for non-photosynthetic vegetation and bare soil whereas the MODIS product was strongly correlated with both in situ methods for photosynthetic vegetation. This study demonstrates the potential of the spectral transect method, both in its ability to produce results comparable to the traditional transect measures, but also in its improved objectivity and relative logistic ease. Future efforts should be made to include spectral ground cover sampling as part of Australia’s plan to produce calibration and validation datasets for remotely sensed products.
Keywords: calibration; ground cover; hyperspectral; spectral unmixing; validation
Description: Published: 28 November 2019
Rights: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
DOI: 10.3390/rs11232825
Appears in Collections:Aurora harvest 8
Earth and Environmental Sciences publications

Files in This Item:
File Description SizeFormat 
hdl_126196.pdfPublished version1.29 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.