Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/126323
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Electrodeposited metal organic framework toward excellent hydrogen sensing in an ionic liquid
Author: Azhar, M.R.
Hussain, G.
Tade, M.O.
Silvester, D.S.
Wang, S.
Citation: ACS Applied Nano Materials, 2020; 3(5):4376-4385
Publisher: American Chemical Society
Issue Date: 2020
ISSN: 2574-0970
2574-0970
Statement of
Responsibility: 
Muhammad Rizwan Azhar, Ghulam Hussain, Moses O. Tade, Debbie S. Silvester and Shaobin Wang
Abstract: The synthesis of thin films of metal organic frameworks (MOFs) is a rapidly growing area owing to the use of these highly functional nanomaterials for various applications. In this study, a thin layer of a typical MOF, copper benzene tricarboxylate (HKUST–1), was synthesized by electrodeposition on a glassy carbon (GC) electrode using a potential-step chronoamperometric technique at room temperature. Various characterization techniques including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to verify the successful deposition of the MOF film and its structure. The electrodeposited MOF crystals showed cuboctahedral morphology with macropores. The MOF modified electrode was applied for hydrogen gas sensing in a room-temperature ionic liquid (RTIL) for the first time. A 4-fold increase in current was observed compared to a precious metal, that is, platinum, and the electrode exhibited a significant catalytic activity compared to the bare GC electrode, making it a very promising low cost material for hydrogen gas sensing.
Keywords: Thin films; electrodeposition; MOFs; ionic liquids; electrochemistry; hydrogen oxidation
Rights: © 2020 American Chemical Society.
DOI: 10.1021/acsanm.0c00503
Grant ID: http://purl.org/au-research/grants/arc/FT170100315
http://purl.org/au-research/grants/arc/DP170104264
Published version: http://dx.doi.org/10.1021/acsanm.0c00503
Appears in Collections:Aurora harvest 8
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.