Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDidana, Y.en
dc.contributor.authorHeinson, G.en
dc.contributor.authorThiel, S.en
dc.contributor.authorKrieger, L.en
dc.identifier.citationGeothermics, 2017; 66:23-38en
dc.description.abstractMagnetotelluric (MT) data were collected across the Habanero Enhanced Geothermal System (EGS) project in the Cooper Basin, South Australia. A baseline regional MT survey consisting of two profiles were collected to delineate subsurface resistivity structure. An MT monitoring survey was conducted during stimulation of the Habanero-4 well. Inversions of the MT data in 2-D reveal three main resistivity layers to a depth of 5 km. The surface layer is ≤6 Ωm, 1.5 km thick, and composed of poorly consolidated sediments of Lake Eyre and Eromanga Basins. The second layer is ≤25 Ωm, 2 km thick, and correlated to consolidated Cooper Basin sediments. A high resistivity zone below depths of 3.5 km is interpreted as the hot intrusive granodiorite of the Big Lake Suite related to the Habanero EGS reservoir. The second MT survey was conducted during stimulation of Habanero-4, where 36.5 million liters (ML) of water with a resistivity of 13 Ωm was injected over 14 days. Analysis of pre- and post-injection residual phase tensors show possible conductive fractures oriented in a N-S direction for periods greater than 10 s. Apparent resistivity maps also revealed that injected fluids possibly propagated towards N-S direction. This result is in agreement with micro-seismic events observed at the Habanero EGS during fluid injection. The MT responses close to injection show on average 5% decrease in apparent resistivity for periods greater than 10 s. The main reasons for observing subtle changes in resistivity at Habanero EGS is the screening effect of the conductive thick sedimentary cover. Analysis of time-lapse models indicate an increase in total conductance of about 25 S in the N-S direction, which likely indicate anisotropic permeability generated by hydraulic stimulation. Overall, the MT monitoring at Habanero EGS highlights the need for favorable geological settings and/or controlled source and downhole EM methods to measure significant changes in resistivity in EGS reservoirs.en
dc.description.statementofresponsibilityYohannes Lemma Didana, Graham Heinson, Stephan Thiel, Lars Kriegeren
dc.rights© 2016 Elsevier Ltd. All rights reserved.en
dc.subjectMagnetotelluric monitoring; Habanero; permeability; EGSen
dc.titleMagnetotelluric monitoring of permeability enhancement at enhanced geothermal system projecten
dc.typeJournal articleen
pubs.library.collectionGeology & Geophysics publicationsen
dc.identifier.orcidHeinson, G. [0000-0001-7106-0789]en
dc.identifier.orcidThiel, S. [0000-0002-8678-412X]en
dc.identifier.orcidKrieger, L. [0000-0002-1832-8245]en
Appears in Collections:Geology & Geophysics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.