Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/128757
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Calcium and strontium isotope dynamics in three polluted forest ecosystems of the Czech Republic, Central Europe
Author: Novak, M.
Holmden, C.
Farkas, J.
Kram, P.
Hruska, J.
Curik, J.
Veselovsky, F.
Stepanova, M.
Kochergina, Y.V.
Erban, V.
Fottova, D.
Simecek, M.
Bohdalkova, L.
Prechova, E.
Voldrichova, P.
Cernohous, V.
Citation: Chemical Geology, 2020; 536:119472-1-119472-12
Publisher: Elsevier
Issue Date: 2020
ISSN: 0009-2541
1872-6836
Statement of
Responsibility: 
Martin Novak, Chris Holmden, Juraj Farkaš, Pavel Kram, Jakub Hruska, Jan Curik, Frantisek Veselovsky, Marketa Stepanova, Yulia V. Kochergina, Vojtech Erban, Daniela Fottova, Martin Simecek, Leona Bohdalkova, Eva Prechova, Petra Voldrichova, Vladimir Cernohous
Abstract: Calcium and strontium isotope ratios were used to identify Ca sources for bulk soil, soil solutions and runoff in the stressed forest ecosystems of Central Europe. All three study sites are underlain by Ca-poor crystalline bedrock (orthogneiss, leucogranite and serpentinite, respectively), but differ in historical rates of acid deposition. UDL, the spruce die-back affected site at the Czech–Polish border underlain by orthogneiss, received six times more acidifying compounds from the atmosphere than LYS and PLB, two paired catchments near the Czech–German border. The paired catchments near the Czech–German border, whose forests were only mildly damaged by industrial pollution, differ in their acid buffering capacity (extremely low for LYS leucogranite, extremely high for PLB serpentinite). At the spruce die-back affected catchment UDL, 19 years of monthly hydrochemical monitoring revealed six times higher atmospheric deposition and runoff fluxes of Ca, compared to the paired catchments LYS and PLB. Across the three sites, the mean δ⁴⁴Ca values increased in the order: spruce bark (−0.84‰) < spruce xylem (−0.31‰) < spruce fine roots (0.0‰) < bedrock (0.08‰) < soil (0.11‰) < spruce needles (0.31‰) < open-area precipitation (0.68‰) < spruce throughfall (0.71‰) < runoff (0.74‰) < soil water (1.11‰). At all three sites, Ca from atmospheric deposition was isotopically similar to Ca in runoff, indicating export of recent atmospheric Ca. All three catchments had isotopically lighter Ca in silicate bedrock and exported isotopically heavier Ca via runoff. Trees mostly represented the isotopically lightest Ca pool, whereas soil water collected by lysimeters contained isotopically heavy Ca. The ⁸⁷Sr/⁸⁶Sr isotope ratios were nearly uniform at the serpentinite site PLB (0.710). The ⁸⁷Sr/⁸⁶Sr ratios across the two felsic sites (UDL and LYS) increased in the order: open-area precipitation (0.710) < spruce canopy throughfall (0.715) < spruce xylem (0.723) < spruce needles (0.725) < soil water (0.734) < runoff (0.740) < soil (0.862) < bedrock (0.881). Collectively, the δ⁴⁴Ca and ⁸⁷Sr/⁸⁶Sr isotope systematics indicated that organic Ca cycling, along with atmospheric input of isotopically heavy Ca, largely contributed to the high-δ⁴⁴Ca values of runoff. The studied silicate bedrock had significantly lower δ⁴⁴Ca values than the reported world-wide average. While bulk soil Ca was likely affected by bedrock Ca even after the period of acid rain, the δ⁴⁴Ca difference between soil and soil water indicated a major role of recycled organic Ca in supplying nutrition to the trees. Future Ca-Sr isotope research in headwater catchments should include isotope analysis of sequentially leached Ca fractions from weathered minerals in soil to better assess the geogenic Ca inputs to runoff. In catchments currently recovering from pollution, Ca-Sr isotope fingerprinting of dust emitted from coal-fired power plants will be needed. Isotope analysis of local coal can indicate to what extent Ca-Sr isotope composition of past deposition contributes to the isotope signatures of present-day runoff.
Keywords: Calcium; isotopes; soil; catchment; drainage water; forest decline
Rights: © 2020 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.chemgeo.2020.119472
Published version: https://www.sciencedirect.com/science/article/abs/pii/S0009254120300115
Appears in Collections:Aurora harvest 4
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.