Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/129741
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJin, H.-
dc.contributor.authorGu, Q.-
dc.contributor.authorChen, B.-
dc.contributor.authorTang, C.-
dc.contributor.authorZheng, Y.-
dc.contributor.authorZhang, H.-
dc.contributor.authorJaroniec, M.-
dc.contributor.authorQiao, S.Z.-
dc.date.issued2020-
dc.identifier.citationChem, 2020; 6(9):2382-2394-
dc.identifier.issn2451-9308-
dc.identifier.issn2451-9294-
dc.identifier.urihttp://hdl.handle.net/2440/129741-
dc.descriptionFull text unavailable-
dc.description.abstractFacile synthesis of single-crystal 2D layered transition-metal nitrides (TMNs) is of crucial importance for the development of forthcoming technologies, such as superconducting, electromagnetic interference shielding, and energy-related applications. However, the fabrication of TMNs with natural 2D layered structure is thermodynamically difficult, in which stringent synthesis constraints have limited the exploration of this important class of functional materials. Here, we employed alkali molten salts as catalysts to achieve facile and large-scale (over decagram) synthesis of a family of 2D layered TMNs, such as MoN₁.₂, WN₁.₅, and Mo₀.₇W₀.₃N₁.₂, under atmospheric pressure. Ex-situ experiments reveal that the molten salt can lower the formation energy of 2D layered TMNs by assuring a liquid-gas synthesis and forming a TMN-salt-TMN superstructure as an intermediate. The resultant 2D layered TMNs show superior performance in hydrogen evolution reaction, demonstrating the immense potential of 2D layered TMNs for energy-related applications and beyond.-
dc.description.statementofresponsibilityHuanyu Jin, Qinfen Gu, Bo Chen, Cheng Tang, Yao Zheng, Hua Zhang, Mietek Jaroniec, Shi-Zhang Qiao-
dc.language.isoen-
dc.publisherElsevier/Cell Press-
dc.rights© 2020 Elsevier Inc.-
dc.source.urihttp://dx.doi.org/10.1016/j.chempr.2020.06.037-
dc.subject2D layered materials; molten salt method; transition-metal nitride; hydrogen evolution; electrocatalysis; catalytic synthesis-
dc.titleMolten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution-
dc.typeJournal article-
dc.identifier.doi10.1016/j.chempr.2020.06.037-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP170104464-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP160104866-
dc.relation.granthttp://purl.org/au-research/grants/arc/LP160100927-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE160101163-
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154-
pubs.publication-statusPublished-
dc.identifier.orcidJin, H. [0000-0002-1950-2364]-
dc.identifier.orcidTang, C. [0000-0002-5167-1192]-
dc.identifier.orcidZheng, Y. [0000-0002-2411-8041]-
dc.identifier.orcidQiao, S.Z. [0000-0002-1220-1761] [0000-0002-4568-8422]-
Appears in Collections:Aurora harvest 4
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.