Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Anomalous C‐C coupling on under‐coordinated Cu(111) – a case study of Cu nanopyramids for CO2 reduction reaction by molecular modelling
Author: Chen, L.
Tang, C.
Jiao, Y.
Qiao, S.
Citation: ChemSusChem: chemistry and sustainability, energy and materials, 2021; 14(2):671-678
Publisher: Wiley Online Library
Issue Date: 2021
ISSN: 1864-5631
Statement of
Ling Chen, Cheng Tang, Yan Jiao, Shi‐Zhang Qiao
Abstract: Converting CO2 to high value‐added C2 hydrocarbons by CO2 reduction reaction attracted attention due to higher energy density, readiness for transportation, and established utilization infrastructure. Herein, it was demonstrated that tailoring the copper catalyst morphology by forming nanopyramids offers alternative routes to promote C2 production. Using density functional theory calculations, five polycrystalline Cu nanopyramids with various orientations, shapes, and exposing facets were investigated. Three investigated nanopyramids favored the C2 production to different extents due to anomalous C−C coupling behaviors. The underlying reason for such C−C coupling was the pyramidal effect on under‐coordinated Cu (111) surface from the nanopyramids. The pyramidal effect includes improved *CO adsorption, geometrically preferable sites for C−C coupling, and enhanced electron transfer. Based on these results, a C2 active site screening principle was developed: an extended “square” principle, which can serve as a new morphology design rule for efficient catalyst development.
Keywords: C−C coupling; molecular modeling; pyramidal effect; square principle; under-coordinated
Rights: © 2020 Wiley‐VCH GmbH
DOI: 10.1002/cssc.202002036
Grant ID:
Appears in Collections:Aurora harvest 8
Chemistry publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.